Sains Malaysiana 42(6)(2013): 773–781
Potential Alkali-Reactivity of Granite Aggregates in the
Bukit Lagong Area, Selangor, Peninsular Malaysia
(Potensi Tindak Balas Alkali Batuan Agregat Granit di Kawasan Bukit Lagong, Selangor, Semenanjung Malaysia)
Ng Tham Fatt*, John K. Raj & Azman A. Ghani
Department of Geology, University
of Malaya, 50603 Kuala Lumpur, Malaysia
Diserahkan: 21 November 2011/Diterima: 16 Disember 2012
ABSTRACT
The Bukit Lagong area is the most
important aggregate supply centre in Selangor.
Geological studies were carried out in four quarries in the Bukit Lagong area and samples were subjected to petrographic
examination and accelerated expansion tests to assess the potential
alkali-aggregate reactivity of granite aggregates. The granitic rocks comprise
mainly of coarse grained megacrystic granite, minor medium grained megacrystic granite and microgranite. Petrographic examination showed that
the primary minerals in these undeformed granitic
rocks are not alkali reactive. Faulting and related alteration and
mineralization have produced potentially alkali reactive minerals including
microcrystalline and strained quartz and fine phyllosilicates.
Marginally deleterious and deleterious expansion is shown by the accelerated
mortar bar tests. Although alkali reactive rocks are present in some quarries
in Bukit Lagong, their volume is small. When blended
with the undeformed granitic rocks, the aggregates
produced are not expected to cause alkali-aggregate reaction in concrete.
Keywords: Alkali-aggregate reaction; cataclasite;
granite aggregate
ABSTRAK
Kawasan Bukit Lagong merupakan sumber batuan agregat yang terpenting di Selangor. Kajian geologi telah dijalankan di empat kuari di kawasan Bukit Lagong dan kajian petrografi serta ujian pengembangan terpecut dilakukan untuk menilai potensi tindak balas alkali agregat untuk agregat granit. Granit megahablur berbutir kasar adalah batuan utama di kawasan kajian dan terdapat sedikit granit megahablur berbutir sederhana dan mikrogranit. Kajian petrografi menunjukkan bahawa mineral primer
yang ada pada batuan granit yang tidak mengalami canggaan adalah tidak alkali reaktif. Sesar serta perubahan dan pemineralan yang berkaitan telah menghasilkan mineral yang mungkin alkali reaktif seperti kuarza keterikan, kuarza mikrohabluran dan filosilikat halus. Ujian batang lepa terpecut menunjukkan pengembangan pinggiran mudarat dan mudarat. Walaupun batuan alkali reaktif wujud dalam kuari di Bukit Lagong, isi padu batuan tersebut adalah kecil. Selepas dicampur dengan granit yang tidak mengalami canggaan, agregat yang dihasilkan tidak dijangka akan menyebabkan tindak balas alkali-agregat dalam konkrit.
Kata kunci: Agregat granit; kataklasit; tindak balas alkali agregat
RUJUKAN
Anthony, M. 1991. Foreword. In Minerals, Metals and the Environment,
Inst. Mining & Metall., Elsevier Applied Science, London.
ASTM (American Society for Testing
Materials). 2004. Standard test method for
potential alkali reactivity of aggregates (mortar-bar method). ASTM Designation C1260-04.
ASTM (American Society for Testing
Materials). 1990. Standard test method for
potential alkali reactivity of concrete aggregate combinations (mortar bar
method). ASTM Designation C227-90.
Brodie, K., Fettes,
D., Harte, B. & Schmid, R. 2007. Structural terms including fault rock terms. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. Web version
of 01.02.07. www.bgs.ac.uk/scmr/home.html.
Chow, W.S. & Abdul Majit Sahat. 1990. Potential alkali-silica reactivity of tuffaceous rocks in the Pengerang area, Johor. Bulletin of the Geological Society of Malaysia 26: 97-108.
Cobbing, E.J. & Mallick, D.I.J. 1987. South-East Asia granite project. Field
report for Peninsular Malaysia. British Geological
Survey Overseas Director Report No. MP/87/19R.
Cobbing, E.J., Pitfield, P.E.J., Darbyshire, D.P.F. & Mallick,
D.I.J. 1992. The granites of the southeast Asian Tin Belt. British Geological Survey Overseas Memoir 10: 369.
Ferraris, C.F. 1995. Alkali-silica
reaction and high performance concrete. National
Institute of Standards and Technology Report 5742. p. 20.
Gaskin, A.J., Jones, R.H. & Vivian,
H.E. 1955. Studies in
cement-aggregate reaction XXI. The reactivity of
various forms of silica in relation to the expansion of mortar bars. Australian
J. Applied Science 6: 78.
Gillott, J.E. 1975. Alkali-aggregate reactions in
concrete. Engineering Geology 9: 303-326.
Gillot, J.E., Duncan, M.A.G. & Swenson,
E.G. 1973. Alkali-aggregate
reaction in Nova Scotia. IV. Characters of the reaction. Cement and
Concrete Research 3: 521-535.
Hobbs, D.W. 1990. Alkali-silica reaction. In Standards
for Aggregates, edited by Pike, D.C. New York: Ellis Horwood.
JMG (Minerals and Geoscience
Department). 2010. Malaysian Mining Industry
2009. Minerals and Geoscience Department Malaysia,
Ministry of Natural Resources and Environment.
Kerrick, D.M. & Hooton, R.D. 1992. ASR of concrete aggregate
quarried from a fault zone: Results and petrographic interpretation of
accelerated mortar bar test. Cement Concrete Research 22: 949-960.
Liew, T.C. 1983. Petrogenesis of the Peninsular Malaysian granitoid batholith. PhD. Thesis, Australia National University (unpublished).
McConnell, D., Mielenz,
R.C., Holland, W.Y. & Greene, K.T. 1947. Cement-aggregate reaction in concrete. Journal of American Concrete Institute 44(2): 93-128.
Mustaza, M., Nurul Huda, R. & Wan Zulasmin, W.I. 2008. Pembangunan lestari kuari-kuari Bukit Lagong. Persidangan Tahunan Jabatan Mineral dan Geosains Malaysia 2008, Kota Bharu,
Kelantan.
Ng, T.F. 1994. Microstructures of the deformed granites
of eastern Kuala Lumpur Implications for mechanisms and temperatures of
deformation. Bulletin of the Geological Society of Malaysia 35:
47-59.
Ng, T.F. 1997. Layered microgranite-pegmatite
complexes of the Kuala Lumpur Granite, Peninsular Malaysia. Geological
Society of Malaysia Warta Geologi23: 129-138.
Ng, T.F. 2010. Microstructural characteristics of some
alkali-aggregate reactive granites of Peninsular Malaysia. National Geoscience Conference 2010. 11-12
Jun 2010, Shah Alam. Geological Society of
Malaysia Warta Geologi36: 119-120.
Ng, T.F. & Yeap,
E.B. 2007. Potential
alkali-silica reaction in aggregate of deformed granite. Bulletin of
the Geological Society of Malaysia 53: 81-88.
Oberholster, R.E. & Davies, G. 1986. An
accelerated method for testing the potential alkali reactivity of siliceous
aggregates. Cement and Concrete Research 16: 181-189.
West, G. 1991. A note on undulatory extinction of quartz in granite. Engineering Geology 24: 159-165.
Wigum, B.J. 1995. Examination of
microstructural features of Norwegian cataclastic rocks and their use for predicting alkali-reactivity in concrete. Engineering
Geology 40: 195-214.
Yeap, E.B. 1992. The mineralogical and petrological factors in the alkali-silica reactions in
concrete. Bulletin of the Geological Society of Malaysia 31: 1-15.
*Pengarang untuk surat-menyurat; email address: ntf@um.edu.my
|