Sains Malaysiana 43(10)(2014): 1471–1475

 

Desiccation Tolerance in Phaleria macrocarpa Embryonic Axes

(Toleransi Terhadap Pengeringan pada Paksi Embrio Phaleria macrocarpa)

 

 

S.M. AHMED ASRITY1, F.Y., TSAN1*, P. DING2 & S.R. SYED ARIS1

 

1Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

2Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

 

3Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

Diserahkan: 21 September 2013/Diterima: 13 Februari 2014

 

ABSTRACT

 

Phaleria macrocarpa seeds are rapidly killed with desiccation to moisture content (MC) below 20%. Desiccation tolerance of their embryonic axes was studied for storage and germplasm conservation purposes. Embryonic axes were extracted aseptically from fresh seeds obtained from fully ripe fruits in a horizontal laminar air flow cabinet. They were then desiccated under aseptic condition for periods ranging from 0-8 h. For each desiccation treatment, embryonic axes were drawn randomly for the determination of MC according to ISTA, electrolyte leakage and proliferation on Murashige and Skoog (MS) media supplemented with 1 mg/l 6-benzylaminopurine (BAP) and 1 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D). The results obtained from this study indicated that the embryonic axes could tolerate dehydration down to 13.6% with desiccation for 8 h while retaining relatively high viability of 76.7%. This was supported by only gradual increment of electrolyte leakage with the desiccated embryonic axes. All non-desiccated embryonic axes with MC of 52.5% were capable to grow into normal plantlets in vitro but dehydration to MC of 36.0% and further down to 13.6% generally resulted in callus formation with up to 16.7% of the embryonic axes while at least 60.0% of the other embryonic axes were still capable to proliferate as normal plantlets in vitro.

 

Keywords: Callus; electrolyte leakage; moisture content; seed; survival

 

ABSTRAK

Biji benih Phaleria macrocarpa mati dengan pengeringan ke kandungan kelembapan (MC) di bawah 20%. Ketahanan pengeringan pada paksi embrio dikaji untuk tujuan penyimpanan dan konservasi germplasm. Paksi embrio diekstrak secara aseptik daripada biji benih segar yang diperoleh daripada buah masak dalam kebuk aliran udara laminar. Paksi embrio kemudiannya dikeringkan dalam keadaan aseptik untuk jangka masa 0-8 jam. Untuk setiap rawatan pengeringan, paksi embrio dikeluarkan secara rawak untuk penentuan MC mengikut tatacara ISTA, kebocoran elektrolit dan pertumbuhan di atas media Murashige dan Skoog (MS) yang diperkayakan dengan 1 mg/l 6-benzilaminopurin (BAP) dan 1 mg/l 2,4-diklorofenosiasitik asid (2,4-D). Keputusan yang diperoleh daripada kajian ini menyatakan bahawa paksi embrio dapat bertoleransi terhadap pengeringan ke MC 13.6% dengan pengeringan selama 8 jam sementara masih mengekalkan kemandirian 76.7% yang tinggi. Ini disokong dengan hanya peningkatan kebocoran elektrolit secara perlahan-lahan daripada paksi embrio yang dikeringkan. Semua paksi embrio yang tidak dikeringkan pada MC 52.5% dapat tumbuh kepada planlet yang normal secara in vitro tetapi pengeringan ke MC 36.0% dan seterusnya ke 13.6% telah menyebabkan pembentukan tisu kalus sebanyak 16.7% dengan paksi embrio manakala sekurang-kurangnya 60.0% paksi embrio yang lain masih dapat tumbuh kepada planlet yang normal secara in vitro.

 

Kata kunci: Biji benih; kalus; kandungan kelembapan; kebocoran elektrolit; kemandirian

RUJUKAN

Asomaning, J.M. 2009. Seed desiccation tolerance and germination of seven important forest tree species in Ghana. Dissertation, Faculty of Agriculture, College of Agriculture and Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. p. 212 (unpublished).

Daffalla, H.H., Abdellatef, E., Elhadi, E.A. & Khalafalla, M.M. 2011. Effect of growth regulators on in vitro morphogenic response of Boscia senegalensis (Pers.) Lam. Poir. using mature zygotic embryos explants. Biotechnology Research International 2011: 1-8.

Effendy, M.A.W., Andriani, Y., Sifzizul, T.M.T. & Mohamad, H. 2011. Antibacterial, radical-scavenging activities and cytotoxicity properties of Phaleria macrocarpa (Scheff.) Boerl. leaves in HepG2 cell lines. International Journal of Pharmaceutical Sciences and Research 7: 1700-1706.

Faria, J.M.R. 2006. Desiccation tolerance and sensitivity in Medicagen truncatula and Inga vara seeds. PhD. Dissertation, Wageningen University, the Netherlands. p. 145 (unpublished).

Harmanto, N. 2005. Mahkota Dewa: Obat Pusaka Para Dewa (A Medicine the Legacy of the Gods). 6th ed. Jakarta: Agro Media Pustaka. p. 104.

Hendra, R., Ahmad, S., Sukari, A., Yunus Shukor, M. & Oskoueian, E. 2011. Flavonoid analyses and antimicrobial activity of various parts of Phaleria macrocarpa (Scheff.) Boerl Fruit. International Journal of Molecular Science 12: 3422-3431.

Kaur, A. & Gosal, S.S. 2009. Desiccation of callus enhances somatic embryogenesis and subsequent shoot regeneration in sugarcane. Indian Journal of Biotechnology 8: 332-334.

Kusuma, I.W., Kuspradini, H., Arung, E.T., Aryani, F., Min, Y.H., Kim, J.S. & Kim, Y. 2011. Biological activity and phytochemical analysis of three Indonesian medicinal plants, Murraya koenigii, Syzygium polyanthum and Zingiber purpurea. Journal of Acupuncture and Meridian Studies 4: 75-79.

Liang, Y. & Sun, W.Q. 2000. Desiccation tolerance of recalcitrant Theobroma cacao embryonic axes: The optimal drying rate and its physiological basis. Journal of Experimental Botany 51(352): 1911-1919.

Mathews, H., Schopke, C., Carcamo, R., Chavarriaga, P., Fauquent, C. & Beuchy, R.N. 1993. Improvement of somatic embryogenesis and plant recovery in cassava. Plant Cell Reports 12: 328-333.

Mng’omba, S.A., du Toit, E.S. & Akinnifesi, F.K. 2008. Plant regeneration through somatic embryogenesis of jacket plum (Pappea capensis). New Zealand Journal of Crop and Horticultural Science 36: 137-144.

Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3): 473-497.

Nedeva, D. & Nikolova, A. 1997. Desiccation tolerance in developing seeds. Bulgarian Journal of Plant Physiology 23(3-4): 100-113.

Normah, M.N. & Makeen, A.M. 2008. Cryopreservation of excised embryos and embryonic axes. In Plant Cryopreservation, edited by Reed, B.M. New York: Springer. pp. 211-240.

Obendorf, R.L., Dickerman, A.M., Pflum, T.M., Kacalanos, M.A. & Smith, M.E. 1998. Drying rate alters soluble carbohydrates, desiccation tolerance and subsequent seedling growth of soybean (Glycine max L. Merrill) zygotic embryos during in vitro maturation. Plant Science 132: 1-12.

Pammenter, N.W., Greggains, V., Kioko, J.I., Wesley-Smith, J., Berjak, P. & Finch-Savage, W.E. 1998. Effects of differential drying rates on viability retention of recalcitrant seeds of Ekebergia capensis. Seed Science Research 8(4): 463-471.

Panza, V., Lainez, V., Maldonado, S. & Maroder, H.L. 2007. Effects of desiccation on Euterpe edulis Martius seeds. Biocell 31(3): 383-390.

PROSEA. 1992. Edible Fruits and Nuts. Plant Resources of South East Asia No. 2. pp. 186-190.

Radha, R.K., William Decruse, S. & Krishnan, P.N. 2010. Cryopreservation of excised embryonic axes of Nothapodytes nimmoniana (Graham) Mebberly - A vulnerable medicinal tree species of the Western Ghats. Indian Journal of Biotechnology 9: 435-437.

Roberts, E.H. 1973. Predicting the storage life of seeds. Seed Science Technology 1: 499-514.

Roberts, E.H. & King, M.W. 1980. The characteristic of recalcitrant seeds. In Recalcitrant Crop Seeds, edited by Chin, H.F. & Roberts, E.H. Kuala Lumpur: Tropical Press Sdn. Bhd. pp. 1-5.

Sher, A. 2009. Antimicrobial activity of natural products from medicinal plants. Gomal Journal of Medical Sciences 7: 72.

Sivritepe, N., Sivritepe, H.O. & Turkben, C. 2008. Determination of moisture content in grape seeds. Seed Science and Technology 36: 198-200.

Spanò, C., Bottega, S., Grilli, I. & Lorenzi, R. 2011. Responses to desiccation injury in developing wheat embryos from naturally- and artificially-dried grains. Plant Physiology and Biochemistry 49(4): 363-367.

Tate, D. 2002. Tropical Fruit. 2nd ed. Singapore: Didier Millet. pp. 64-65.

Tzec-Sima, M.A., Orellana, R. & Robert, M.L. 2006. In vitro rescue of isolated embryos of Bactris major and Desmoncus orthacanthos. In Vitro Cellular and Developmental Biology - Plant 42: 54-58.

Winarto, W.P. 2004. Mahkota Dewa: Budi Daya & Pemanfaatan untuk Obat. Jakarta: Penebar Swadaya. p. 88.

Zhang, Y., Xu, X. & Liu, H. 2006. Chemical constituents from Mahkota Dewa. Journal of Asian Natural Products Research 8: 119-123.

 

 

*Pengarang untuk surat-menyurat; email: tsanfuiying@salam.uitm.edu.my

 

 

 

 

sebelumnya