Sains Malaysiana 43(10)(2014): 1471–1475
Desiccation
Tolerance in Phaleria macrocarpa Embryonic Axes
(Toleransi
Terhadap Pengeringan pada Paksi Embrio Phaleria macrocarpa)
S.M. AHMED ASRITY1, F.Y., TSAN1*, P. DING2 & S.R. SYED ARIS1
1Faculty of Plantation and
Agrotechnology, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2Faculty of Agriculture, Universiti
Putra Malaysia, 43400 Serdang, Selangor, Malaysia
3Faculty of Applied Sciences,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
Diserahkan: 21 September 2013/Diterima: 13 Februari 2014
ABSTRACT
Phaleria macrocarpa seeds are rapidly killed with desiccation
to moisture content (MC) below 20%. Desiccation tolerance
of their embryonic axes was studied for storage and germplasm conservation
purposes. Embryonic axes were extracted aseptically from fresh seeds obtained
from fully ripe fruits in a horizontal laminar air flow cabinet. They were then
desiccated under aseptic condition for periods ranging from 0-8 h. For each
desiccation treatment, embryonic axes were drawn randomly for the determination
of MC according to ISTA, electrolyte leakage and
proliferation on Murashige and Skoog (MS) media supplemented with 1
mg/l 6-benzylaminopurine (BAP) and 1 mg/l
2,4-dichlorophenoxyacetic acid (2,4-D). The results obtained from this study
indicated that the embryonic axes could tolerate dehydration down to 13.6% with
desiccation for 8 h while retaining relatively high viability of 76.7%. This
was supported by only gradual increment of electrolyte leakage with the
desiccated embryonic axes. All non-desiccated embryonic axes with MC of
52.5% were capable to grow into normal plantlets in vitro but dehydration
to MC of 36.0% and further down to 13.6% generally resulted
in callus formation with up to 16.7% of the embryonic axes while at least 60.0%
of the other embryonic axes were still capable to proliferate as normal
plantlets in vitro.
Keywords: Callus; electrolyte leakage; moisture content; seed;
survival
ABSTRAK
Biji benih Phaleria
macrocarpa mati dengan pengeringan ke kandungan kelembapan (MC)
di bawah 20%. Ketahanan pengeringan pada paksi embrio dikaji
untuk tujuan penyimpanan dan konservasi germplasm. Paksi embrio
diekstrak secara aseptik daripada biji benih segar yang diperoleh daripada buah masak dalam kebuk aliran udara laminar. Paksi
embrio kemudiannya dikeringkan dalam keadaan aseptik untuk jangka masa 0-8 jam.
Untuk setiap rawatan pengeringan, paksi embrio dikeluarkan secara rawak untuk
penentuan MC mengikut tatacara ISTA,
kebocoran elektrolit dan pertumbuhan di atas media Murashige dan Skoog (MS)
yang diperkayakan dengan 1 mg/l 6-benzilaminopurin (BAP)
dan 1 mg/l 2,4-diklorofenosiasitik asid (2,4-D). Keputusan yang diperoleh
daripada kajian ini menyatakan bahawa paksi embrio dapat bertoleransi terhadap
pengeringan ke MC 13.6% dengan pengeringan selama 8
jam sementara masih mengekalkan kemandirian 76.7% yang tinggi. Ini disokong dengan hanya peningkatan kebocoran elektrolit secara
perlahan-lahan daripada paksi embrio yang dikeringkan. Semua paksi
embrio yang tidak dikeringkan pada MC 52.5% dapat tumbuh kepada
planlet yang normal secara in vitro tetapi pengeringan ke MC 36.0%
dan seterusnya ke 13.6% telah menyebabkan pembentukan tisu kalus sebanyak 16.7%
dengan paksi embrio manakala sekurang-kurangnya 60.0% paksi embrio yang lain
masih dapat tumbuh kepada planlet yang normal secara in vitro.
Kata kunci: Biji benih; kalus; kandungan kelembapan;
kebocoran elektrolit; kemandirian
RUJUKAN
Asomaning, J.M. 2009. Seed desiccation tolerance and germination of seven important forest tree
species in Ghana. Dissertation, Faculty of Agriculture, College of
Agriculture and Natural Resources, Kwame Nkrumah University of Science and
Technology, Kumasi, Ghana. p. 212 (unpublished).
Daffalla, H.H., Abdellatef, E., Elhadi, E.A.
& Khalafalla, M.M. 2011. Effect
of growth regulators on in vitro morphogenic response of Boscia
senegalensis (Pers.) Lam. Poir. using mature zygotic embryos explants. Biotechnology Research International 2011:
1-8.
Effendy, M.A.W., Andriani, Y., Sifzizul, T.M.T. & Mohamad, H.
2011. Antibacterial, radical-scavenging activities and cytotoxicity properties
of Phaleria macrocarpa (Scheff.) Boerl. leaves in HepG2 cell lines. International Journal of Pharmaceutical Sciences and
Research 7: 1700-1706.
Faria, J.M.R. 2006. Desiccation tolerance and
sensitivity in Medicagen truncatula and Inga vara seeds. PhD. Dissertation, Wageningen University, the Netherlands. p. 145 (unpublished).
Harmanto, N. 2005. Mahkota Dewa: Obat Pusaka Para Dewa (A Medicine the Legacy of
the Gods). 6th ed. Jakarta: Agro Media Pustaka. p. 104.
Hendra, R., Ahmad, S., Sukari, A., Yunus Shukor, M. &
Oskoueian, E. 2011. Flavonoid analyses and antimicrobial activity of various
parts of Phaleria macrocarpa (Scheff.) Boerl Fruit. International
Journal of Molecular Science 12: 3422-3431.
Kaur, A. & Gosal, S.S. 2009. Desiccation of callus enhances
somatic embryogenesis and subsequent shoot regeneration in sugarcane. Indian
Journal of Biotechnology 8: 332-334.
Kusuma, I.W., Kuspradini, H., Arung, E.T.,
Aryani, F., Min, Y.H., Kim, J.S. & Kim, Y. 2011. Biological activity and phytochemical analysis
of three Indonesian medicinal plants, Murraya koenigii, Syzygium
polyanthum and Zingiber purpurea. Journal of Acupuncture
and Meridian Studies 4: 75-79.
Liang, Y. & Sun, W.Q. 2000. Desiccation tolerance of
recalcitrant Theobroma cacao embryonic axes: The optimal drying rate and
its physiological basis. Journal of Experimental Botany 51(352):
1911-1919.
Mathews, H., Schopke, C., Carcamo, R.,
Chavarriaga, P., Fauquent, C. & Beuchy, R.N. 1993. Improvement of somatic embryogenesis and plant
recovery in cassava. Plant Cell Reports 12: 328-333.
Mng’omba, S.A., du Toit, E.S. & Akinnifesi, F.K. 2008. Plant regeneration through somatic embryogenesis of jacket plum (Pappea
capensis). New Zealand Journal of Crop and Horticultural Science 36:
137-144.
Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco
tissue cultures. Physiologia Plantarum 15(3): 473-497.
Nedeva, D. & Nikolova, A. 1997. Desiccation
tolerance in developing seeds. Bulgarian Journal of Plant Physiology 23(3-4):
100-113.
Normah, M.N. & Makeen, A.M. 2008. Cryopreservation
of excised embryos and embryonic axes. In Plant Cryopreservation,
edited by Reed, B.M. New York: Springer. pp. 211-240.
Obendorf, R.L., Dickerman, A.M., Pflum, T.M., Kacalanos, M.A.
& Smith, M.E. 1998. Drying rate alters soluble carbohydrates, desiccation
tolerance and subsequent seedling growth of soybean (Glycine max L.
Merrill) zygotic embryos during in vitro maturation. Plant Science 132:
1-12.
Pammenter, N.W., Greggains, V., Kioko, J.I., Wesley-Smith, J., Berjak,
P. & Finch-Savage, W.E. 1998. Effects of differential
drying rates on viability retention of recalcitrant seeds of Ekebergia
capensis. Seed Science Research 8(4): 463-471.
Panza, V., Lainez, V., Maldonado, S. &
Maroder, H.L. 2007. Effects
of desiccation on Euterpe edulis Martius seeds. Biocell 31(3):
383-390.
PROSEA. 1992. Edible Fruits and Nuts. Plant
Resources of South East Asia No. 2. pp. 186-190.
Radha, R.K., William Decruse, S. & Krishnan, P.N. 2010.
Cryopreservation of excised embryonic axes of Nothapodytes nimmoniana (Graham)
Mebberly - A vulnerable medicinal tree species of the Western Ghats. Indian
Journal of Biotechnology 9: 435-437.
Roberts, E.H. 1973. Predicting the storage life of seeds. Seed
Science Technology 1: 499-514.
Roberts, E.H. & King, M.W. 1980. The
characteristic of recalcitrant seeds. In Recalcitrant Crop Seeds,
edited by Chin, H.F. & Roberts, E.H. Kuala Lumpur:
Tropical Press Sdn. Bhd. pp. 1-5.
Sher, A. 2009. Antimicrobial activity of natural products from
medicinal plants. Gomal Journal of Medical Sciences 7: 72.
Sivritepe, N., Sivritepe, H.O. & Turkben, C.
2008. Determination of moisture
content in grape seeds. Seed Science and Technology 36: 198-200.
Spanò, C., Bottega, S., Grilli, I. &
Lorenzi, R. 2011. Responses
to desiccation injury in developing wheat embryos from naturally- and
artificially-dried grains. Plant Physiology and Biochemistry 49(4):
363-367.
Tate, D. 2002. Tropical Fruit. 2nd ed. Singapore: Didier
Millet. pp. 64-65.
Tzec-Sima, M.A., Orellana, R. & Robert, M.L.
2006. In vitro rescue of
isolated embryos of Bactris major and Desmoncus orthacanthos. In Vitro Cellular and Developmental Biology - Plant 42: 54-58.
Winarto, W.P. 2004. Mahkota Dewa: Budi Daya & Pemanfaatan
untuk Obat. Jakarta: Penebar Swadaya. p. 88.
Zhang, Y., Xu, X. & Liu, H. 2006. Chemical
constituents from Mahkota Dewa. Journal of Asian Natural Products
Research 8: 119-123.
*Pengarang untuk surat-menyurat; email: tsanfuiying@salam.uitm.edu.my
|