Sains Malaysiana 43(10)(2014):
1565–1571
Radiological
Impact Assessment of Fukushima Daiichi Nuclear Accident on
Malaysian
Marine biotas via Ocean Partway using Erica Code System
(Penilaian Kesan Radiologi terhadap Kehidupan Akuatik
melalui Lautan Pasifik ke Malaysia
Akibat Bencana Nuklear Fukushima Daiichi dengan Kod-Sistem
Erica)
HOH SIEW SIN1, SUKIMAN SARMANI2 & KHOO KOK SIONG1*
1School of Applied
Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor, Malaysia
2School of Chemical
Sciences & Food Technology, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Diserahkan: 3 September 2013/Diterima: 10 Februari 2014
ABSTRACT
Fukushima Daiichi nuclear disaster led to radioactive contamination
crisis was resulted from a series of system failures, nuclear meltdown
and radioactive material releases, following the 9.0 magnitude of
earthquake and tsunami on March 11, 2011. The objectives of this
study were; to investigate the movement of radionuclides based on
oceanography and morphology of Pacific Ocean and Southeast Asia
(Malaysia); to estimate the time for radionuclides to reach Malaysia
and to calculate the amount of total absorbed dose rate for selected
marine biotas namely benthic fish and pelagic fish. ERICA code
system was used because it has the ERICA integrated approach to assess the radiation
risk of biota. The estimations of radionuclide discharge from Fukushima
Daiichi nuclear disaster were based on Cs-137 (half-life of 30.17
years), I-131 (half-life of 0.02 years). The parameters such as
discharge rate of radionuclides (Bq/s), water depth (m), the distance
between the target coast of Malaysia and radionuclide release point
(m), the distance between the receptor and radionuclide release
(m) and the velocity of the water/ocean currents (m/s) were studied.
The results showed that the minimum estimated arrival time of radionuclides
to reach Malaysia is located in Sandakan, Sabah, which is approximated
at 4.82 years (Dec 2015) with an average of 5.039±0.310 years
after the accident. Meanwhile, maximum estimated arrival time of
radionuclides to Malacca is 5.87 years (Jan 2017) with an average
of 5.527±0.480 years. The lowest estimated total absorbed
dose rate by benthic fish is 0.0583 μGy/h with an average of
(6.33±0.71) × 10-2 μGy/h in Malacca whereas the highest
estimated total absorbed dose rate by benthic fish is 0.0751 μGy/h
with an average of (7.11±0.57) × 10-2 μGy/h in Sandakan, Sabah. Pelagic fish
in Malacca shows the lowest estimated total absorbed dose rate of
0.00149 μGy/h with an average of (1.62±0.18) ×
10-3 μGy/h whereas Sandakan,
Sabah showed the highest estimated total absorbed dose rate of 0.00193
μGy/h with an average of (1.83±0.15) × 10-3 μGy/h.
The total absorbed dose rate and risk quotient of ERICA code system show that
for all reference organisms, the probability of exceeding the selected
screening dose rate of 400 μGy/h by aquatic biota is below
the probability selected. Therefore, no measurable population of
chronic exposure effects would occur at this stage. Nonetheless,
a normal experimental analysis of fish samples should be performed
in order to monitor the radiation effects to marine ecosystem.
Keywords: ERICA; Fukushima Daiichi nuclear disaster;
marine biota; total absorbed dose rate
ABSTRAK
Kemalangan Loji Kuasa Reaktor Nuklear Fukushima
Daiichi merupakan krisis pencemaran nuklear akibat kerosakan dan
pelepasan bahan radiokatif akibat bencana gempa bumi bermagnitud
9.0 diikuti tsunami yang melanda Jepun pada 11 Mac 2011. Objektif kajian ini adalah; untuk mengkaji cara pergerakan radionuklid
berdasarkan arus dan morfologi oseanografi Lautan Pasifik dan Asia
Tenggara; menjangka masa pergerakan radionuklid ke Malaysia yang
dibebaskan oleh kemalangan Reaktor Nuklear Fukushima Daiichi melalui
perairan Malaysia dan mengira jumlah anggaran kadar dos terserap
terhadap ikan bentik dan ikan pelagik. Kod sistem ERICA digunakan kerana ia
mempunyai struktur berdasarkan Pendekatan ERICA Bersepadu untuk menilai
risiko sinaran kepada biota. Radionuklid dianggap
bebas daripada loji kuasa reaktor nuklear berdasarkan Cs-137 (separuh
hayat 30.17 tahun) dan I-131 (separuh hayat 0.02 tahun).
Parameter seperti kadar aktiviti radionuklid yang dibebaskan (Bq/s),
kedalaman air (m), jarak antara sasaran pantai Malaysia dan tempat
melepaskan radionuklid (m), jarak antara reseptor dengan tempat
melepaskan radionuklid (m) dan kadar kelajuan air/arus pengairan
lautan (m/s) telah dikaji. Hasil kajian menunjukkan jangkaan masa
tercepat ketibaan radionuklid ke Malaysia adalah 4.82 tahun (Dis
2015) dengan purata 5.039±0.310 tahun bertempat di Sandakan,
Sabah manakala jangkaan masa terlambat adalah 5.87 tahun (Jan 2017)
bertempat di Melaka dengan purata 5.527±0.480 tahun. Jumlah
anggaran kadar dos terendah terhadap
ikan bentik mengikut jarak terjuah adalah 0.0583 μGy/j berpurata
(6.33±0.71) × 10-2 μGy/j bertempat di Melaka manakala jumlah
kadar dos tertinggi terhadap ikan bentik mengikut jarak terdekat
adalah 0.0751 μGy/j berpurata (7.11±0.57) × 10-2 μGy/j di Sandakan.
Ikan pelagik di Melaka mempunyai anggaran jumlah kadar dos terendah
mengikut jarak terjuah iaitu 0.00149 μGy/j dengan purata (1.62±0.18)
× 10-3
μGy/j manakala Sandakan mempunyai jumlah kadar
dos tertinggi mengikut jarak terdekat iaitu 0.00193 μGy/j berpurata
(1.83±0.15) × 10-3
μGy/j. Jumlah kadar dos terserap dan tahap risiko
kod sistem ERICA menunjukkan bahawa untuk
semua rujukan organisma, kebarangkalian melebihi kadar dos terhad
yang dipilih iaitu 400 μGy/j oleh biota akuatik adalah di bawah
kebarangkalian yang dipilih. Oleh itu, tidak
ada kesan pendedahan kronik kepada populasi yang dapat diukur pada
peringkat ini. Walau bagaimanapun, penganalisian sampel ikan
perlu dilakukan untuk memantau kesan sinaran terhadap ekosistem
marin.
Kata kunci: Biota lautan; ERICA;
jumlah kadar dos terserap; kemalangan Loji Kuasa
Reaktor Nuklear Fukushima Daiichi
RUJUKAN
Albert, C.G., Hadil, R. & Daud, A.
2003. Overview of biology and
exploitation of the small pelagic fish resources of the EEZ of Sarawak,
Malaysia. National Fisheries Symposium. Kelantan, Kota Bharu. 20 February.
Anderson, G. 2003. Marine Science Seawater
Movement. http:// www.marinebio.net/marinescience/02ocean/swmovement. htm. Accessed on 15 December 2012.
Advanced Google Map Distance Calculator
2013. Daft Logic.
http://www.daftlogic.com/projects-advanced-google-maps-distance-calculator.htm.
Accessed on 23 Jun 2013.
Brown, J.E., Beresford, N.A. &
Hosseini, A. 2013. Approaches to providing missing
transfer parameter values in the ERICA Tool: How well do they work? Journal
of Environmental Radioactivity 126(12): 399-411.
Brown, J.E., Alfonso, B., Avila, R.,
Beresford, N.A., Copplestone, D., Pröhl, G. & Ulanovsky, A. 2008. The ERICA tool. Journal of
Environmental Radioactivity 9(99): 1371-1383.
Blaylock, B.G., Frank, M.L. &
O’Neal, B.R. 1993. Methodology for Estimating
Radiation Dose Rates to Freshwater Biota Exposed to Radionuclides in the
Environment ES/ER/TM-78. U.S. Department of Energy.
Chino, M., Nakayama, H., Nagai, H.,
Terada, H., Katata, G. & Yamazawa, H. 2011. Preliminary estimation of release amounts of 131I and 137Cs
accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the
atmosphere. Journal of Nuclear Science and Technology 7(48): 1129-1134.
Google Map 2013. Map of south east Asia. https://maps. google.com.my/maps?hl=en&q=pnas&um=1&ie=UTF-
8&sa=N&tab=wl. Accessed on 15 January 2013.
Gregory, C.J. & Michael, J.M. 2001. Equatorial Pacific
Ocean Horizontal Velocity, Divergence and Upwelling. Pacific
Environmental Laboratory Seattle 2181.
IAEA. 2011. Report of the Japanese Government to the IAEA
Ministerial Conference on Nuclear Safety. Vienna: International Atomic Energy
Agency.
IAEA. 1992. Effects of Ionizing Radiation on Plants and
Animals at Levels Implied by Current Radiation Protection Standards, IAEA
Technical Report Series 332. Vienna: International Atomic Energy Agency.
Knauss, J.A. 1978. An Introduction to
Physical Oceanography. Berlin: Berlin University.
Kryshev, I.I., Kryshev, A.I. & Sazykina, T.G. 2012. Dynamics of radiation exposure to marine biota in the area of the
Fukushima NPP in March - May 2011. Journal of Environmental
Radioactivity 114: 157-161.
Laura, T., Erika, B., Giorgia, C.,
Alberto, P. & Domiziano, M. 2012. Comparison of radioactivity data measured in PM10 aerosol samples at two
elevated stations in northern Italy during the Fukushima event. Journal of
Environmental Radioactivity 114: 105-112.
Lujaniene, G., Bycenkiene, S., Povinec,
P. & Gera, M. 2011. Radionuclides from
the Fukushima accident in the air over Lithuania: Measurement and modelling
approaches. Journal of Environmental Radioactivity 114: 71-80.
MHLW. 2011. Handling of food contaminated by radioactivity.
Pharmaceutical and Food Safety Bureau, Ministry of Health, Labour and Welfare
0317 Article 3. Tokyo, Japan.
NOAA. 2012. North Pacific subtropical convergence zone.
http://marinedebris.noaa.gov/info/patch.html. Accessed on 15 December 2012.
Sazykina, T.G. & Kryshev, I.I. 2002. Assessment
of the Impact of Radioactive Substance on Marine Biota of North European Water. SPA Typhoon: European Commission.
UNSCEAR. 2012. The Fukushima-Daiichi nuclear power plant
accident. http://www.unscear.org/unscear/en/fukushima.html. Accessed on 18
December 2012.
UNSCEAR. 1996. Sources and Effects of Ionizing Radiation.
New York: United Nations Scientific Committee on the Effects of Atomic
Radiation.
*Pengarang
untuk surat-menyurat; email: khoo@ukm.edu.my
|