Sains Malaysiana 43(11)(2014): 1801–1809
An
Empirical Assessment of the Closeness of Hidden Truncation and
Additive
Component based Skewed Distributions
(Penilaian Empirik Keakraban Pemangkasan Tersembunyi dan Komponen Tambahan berasaskan Taburan Terpencong)
PARTHA JYOTI HAZARIKA1 & SUBRATA CHAKRABORTY2*
1Department of
Statistics, North-Eastern Hill University, Shillong 793022, Meghalaya, India
2Department of
Statistics, Dibrugarh University, Dibrugarh 786004,
Assam, India
Diserahkan: 26 Jun 2013/Diterima: 31 Mac
2014
ABSTRACT
Hidden truncation (HT) and additive component (AC) are two well-known
paradigms of generating skewed distributions from known symmetric distribution.
In case of normal distribution it has been known that both the above paradigms
lead to Azzalini’s (1985) skew normal distribution.
While the HT directly gives the Azzalini’s (1985)
skew normal distribution, the one generated by AC also leads to the same
distribution under a re-parameterization proposed by Arnold and Gomez (2009).
But no such re-parameterization which leads to exactly the same distribution by
these two paradigms has so far been suggested for the skewed distributions
generated from symmetric logistic and Laplace distributions. In this article,
an attempt has been made to investigate numerically as well as statistically
the closeness of skew distributions generated by HT and AC methods under the same
re-parameterization of Arnold and Gomez (2009) in the case of logistic and
Laplace distributions.
Keywords: KS test; Kullback–Leibler (KL) distance; Monte Carlo integration;
simulation; skew Laplace distribution; skew logistic distribution
ABSTRAK
Pemangkasan tersembunyi (HT) dan komponen tambahan (AC) adalah dua paradigma yang terkenal dalam menghasilkan taburan terpencong daripada taburan simetri. Dalam taburan normal ia telah diketahui bahawa kedua-dua paradigma di atas membawa terus kepada taburan pencongan normal (Azzalini 1985). Manakala HT terus memberikan taburan pencongan normal (Azzalini 1985), yang dijana oleh AC juga membawa kepada taburan yang sama di bawah pemparameteran semula yang dicadangkan oleh Arnold dan Gomez (2009). Tetapi tiada pemparameteran semula yang membawa kepada taburan yang sama oleh kedua-dua paradigma ini disarankan untuk taburan pencongan yang dihasilkan daripada simetri logistik dan taburan Laplace. Dalam artikel ini, usaha telah dibuat untuk mengkaji secara berangka dan statistik keakraban taburan pencongan yang dijana oleh kaedah HT dan AC di bawah pemparameteran semula Arnold dan Gomez (2009) bagi kes logistik dan taburan Laplace.
Kata kunci: Integrasi Monte Carlo; jarak Kullback-Leibler (KL); simulasi; taburan terpencong Laplace; taburan terpencong logistik; ujian KS
RUJUKAN
Arnold, B.C. & Beaver, R.J. 2002. Skewed multivariate
models related to hidden truncation and/or selective reporting (with
discussion). Test 11: 7-54.
Arnold, B.C. & Beaver, R.J. 2000a. The skew Cauchy distribution. Statist.
Prob. Lett. 49: 285-290.
Arnold, B.C. & Beaver, R.J. 2000b. Hidden truncation models. Sankhya A62: 22-35.
Arnold, B.C., Beaver, R.J., Groeneveld, R.A. & Meeker, W.Q. 1993. The non-truncated marginal of a truncated
bivariate normal distribution. Psychometrika 58: 471-478.
Arnold, B.C. & Gomez, H.W. 2009. Hidden truncation and
additive components: Two alternative skewing paradigms. Calcutta Statistical
Association Bulletin 61: 241-244.
Azzalini, A. 1986. Further results on a class of distributions
which includes the normal ones. Statistica 46: 199-208.
Azzalini, A. 1985. A class of distributions which includes the normal ones. Scand. J. Stat. 12: 171-178.
Burnham, K.P. & Anderson, D.R. 2002. Model Selection
and Multimodel Inference: A Practical Information
Theoretic Approach. 2nd ed. New York: Springer.
Chakraborty, S. & Hazarika,
P.J. 2011. A survey of the theoretical developments in univariate skew normal distributions. Assam.
Statist. Rev. 25(1): 41-63.
Chakraborty, S., Hazarika,
P.J. & Ali, M. Masoom. 2014a. A multimodal skew laplace distribution. Pak. J. Statist. 30(2):
253-264.
Chakraborty, S., Hazarika,
P.J. & Ali, M. Masoom. 2014b. A multimodal skewed
extension of normal distribution: Its properties and applications. Statistics:
A Journal of Theoretical and Applied Statistics DOI: 10.1080/02331888.2014.908880.
Chakraborty, S., Hazarika,
P.J. & Ali, M. Masoom. 2012. A new skew logistic distribution and its properties. Pak.
J. Statist. 28(4): 513-524.
Gupta, R.D. & Kundu, D. 2004. Discriminating between gamma and generalized exponential
distributions. J. Statist. Comput. Simul. 74(2): 107-121.
Gupta, R.D. & Kundu,
D. 2003a. Closeness of gamma
and generalized exponential distribution. Communications in
Statistics-Theory and Methods 32(4): 705-721.
Gupta, R.D. & Kundu,
D. 2003b. Discriminating between Weibull and
generalized exponential distributions. Computational Statistics & Data
analysis 43(2): 179-196.
Huang, W.J. & Chen, Y.H. 2007. Generalized skew Cauchy
distribution. Statist. Probab. Lett. 77: 1137-1147.
Kotz, S., Kozubowski,
T.J. & Podgorski, K. 2001. The Laplace Distribution and Generalizations. Berlin: Birk Hauser.
Nadarajah, S. 2009. The skew logistic distribution. Adv. Stat. Anal. 93: 187-203.
Nekoukhou, V. & Alamatsaz, M.H. 2012. A family of skew-symmetric-Laplace distributions. Statistical
Papers 53(3): 685-696.
Pakyari, R. 2011. Discriminating between generalized exponential,
geometric extreme exponential and Weibull distributions. J. Statist. Comput. Simul. 80(12):
1403-1412.
Robert, C.P. & Casella, G. 2004. Monte
Carlo Statistical Methods. 2nd ed. New
York: Springer.
Wahed, A.S. & Ali, M. Masoom. 2001.
The skew logistic distribution. J. Stat. Res. 35: 71-80.
*Pengarang untuk surat-menyurat; email: subrata_arya@yahoo.co.in
|