Sains Malaysiana 43(12)(2014): 1843–1853
Drivers
of Soil Carbon Dioxide Efflux in a 70 years Mixed Trees Species of Tropical
Lowland Forest, Peninsular Malaysia
(Pemacu kepada Karbon Dioksida Efluks Tanah dalam Masa 70 Tahun Kepelbagaian
Spesies Pokok di Hutan Tropika Tanah Rendah, Semenanjung Malaysia)
K.H. MANDE1, A.M. ABDULLAH2*, A.A. ZAHARIN3,
& A.N. AINUDDIN4
1Air Pollution &
Ecophysiology Laboratory, Faculty of Environmental Studies
Universiti Putra Malaysia, 43400 Serdang,
Selangor Darul Ehsan, Malaysia
2Department of
Environmental Sciences, Faculty of Environmental Studies
Universiti Putra Malaysia, 43400 Serdang,
Selangor Darul Ehsan, Malaysia
3Environmental
Forensics Research Centre, Faculty of Environmental Studies
Universiti Putra Malaysia, 43400 Serdang,
Selangor Darul Ehsan, Malaysia
4Institute
of Tropical Forest and Forest Product, Universiti Putra Malaysia
43400 Serdang,
Selangor Darul Ehsan, Malaysia
Diserahkan: 27 November 2013/Diterima: 22
April 2014
ABSTRACT
Forest biomass is a major component in carbon sequestration and a
driver of heterotrophy and autotrophy soil CO2 efflux, as it
accumulation increases carbon organic nutrients, root growth and microbial
activity. Understanding forest biomass rational to ascertain the forest
ecosystems productivity is important. A study has been conducted in a
70-years-old forest of mixed tree species, Sungai Menyala Forest, Port Dickson, Peninsular Malaysia, measuring the total above ground
biomass (TAGB),
below ground biomass (BGB), total forest carbon (SOCs), soil organic
carbon stock (SOCstoc) and soil CO2 efflux from 1 February
to 30 June 2013. The aim was to determine the effect of forest biomass, litter
fall and influence of environmental factors on soil CO2 efflux. Multiple
regression analysis has been conducted on the relationship between the
variables and the soil CO2 efflux. Soil CO2 efflux was found to
range from 92.09-619.67 mg m-2 h-1, with the amount of the tropical
forest biomass estimated at 1.9×106, 7.7×106 and 9.2×105 kg
for TAGB, BGB and SOCs,
respectively. The analysis showed a strong correlation between soil CO2 efflux
and soil temperature, soil moisture, water potential and forest carbon input
with R2 more than 0.89 at p<0.01. The
findings showed a strong contribution from forest biomass as drivers of
heterotrophy and autotrophy soil CO2 efflux. We can conclude that the
forest biomass and environmental factors are responsible for the remarkable
variation in soil CO2 efflux, as climate change can cause increase
in temperature as well as deforestation decreases forest biomass.
Keywords: Autotrophy; carbon input; forest biomass; heterotrophy;
microbial activities; soil CO2 efflux
ABSTRAK
Biojisim hutan adalah komponen utama dalam perampasan karbon dan pemacu kepada CO2 efluks tanah secara heterotrofi dan autotrofi dengan meningkatnya penghimpunan nutrien karbon organik, pertumbuhan akar dan aktiviti microbiologi. Pemahaman biojisim hutan yang rasional kepada penentuan produktiviti ekosistem hutan adalah penting. Satu kajian telah dijalankan di dalam hutan yang berusia 70 tahun dengan kepelbagaian spesies pokok, di Hutan Sungai Menyala, Port
Dickson, Semenanjung Malaysia, dengan pengukuran jumlah biojisim di atas tanah (TAGB), biojisim di bawah tanah (BGB), jumlah karbon hutan (SOCs), stok karbon organik tanah (SOCstoc) dan juga CO2 efluks tanah dari 1 Februari hingga 30 Jun
2013. Kajian ini bertujuan untuk menentukan kesan biojisim hutan, gugurnya kekotoran serta pengaruh faktor alam sekitar terhadap CO2 efluks tanah. Analisis pengunduran gandaan telah dijalankan dalam penentuan hubungan antara pemboleh ubah dengan CO2 efluks tanah. CO2 efluks tanah didapati berada dalam julat 92.09-619.67 mg m-2 h-1, dengan jumlah biojisim hutan tropika dianggarkan pada 1.9×106 kg,
7.7×106 kg, 9.2×105 kg masing-masing bagi TAGB, BGB dan SOCs. Analisis menunjukkan perhubungan yang kuat antara CO2 efluks terhadap suhu tanah, kelembapan tanah, keupayaan air dan input karbon hutan dengan nilaiR2 melebihi 0.89 pada nilaip<0.01. Penemuan ini menunjukkan sumbangan yang kuat daripada biojisim hutan sebagai pemacu heterotrofi dan autotrofi CO2 efluks tanah. Disimpulkan bahawa biojisim hutan dan faktor-faktor alam sekitar bertanggungjawab terhadap kepelbagaian yang menakjubkan dalam CO2 efluks tanah, dengan perubahan iklim boleh menyebabkan pertambahan suhu begitu juga menurunnya biojisim hutan melalui penyahhutanan.
Kata kunci: Aktiviti mikrobial; autotrofi; biojisim hutan; CO2 efluks tanah; input karbon; heterotrofi
RUJUKAN
Adachi, M., Bekku,
Y.S., Rashidah, W., Okuda, T. & Koizumi, H. 2006. Differences in soil respiration between
different tropical ecosystems. Applied Soil Ecology 34(2-3):
258-265.
Akburak, S. & Makineci,
E. 2013. Temporal changes of soil respiration
under different tree species. Environmental Monitoring and Assessment 185(4):
3349-3358.
Asensio, D., Yuste, J.C., Mattana, S., Ribas, À., Llusià, J. & Peñuelas, J.
2012. Litter VOCs induce changes in soil microbial biomass C and N and largely
increase soil CO2 efflux. Plant and Soil 360(1-2): 163-174.
Coleman, D.C., Hunter, M.D., Hutton,
J., Pomeroy, S. & Swift, L. 2002. Soil
respiration from four aggrading forested watersheds measured over a quarter
century. Forest Ecology and Management 157: 247-253.
Davidson, E.A., Savage, K., Bolstad,
P., Clark, D.A., Curtis, P.S., Ellsworth, D.S., Hanson, P.J., Law, B.E., Luo, Y., Pregitzer, K.S., Randolph, J.C. & Zak, D. 2002.
Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest
Meteorology 113: 39-51.
Dixon, R., Brown, S., Houghton, R.,
Solomon, A., Trexler, M. & Wisniewski, J. 1994. Carbon pools and flux of global forest
ecosystems. Science (Washington) 263(5144): 185-189.
Eleanor, M. 2008. Soil organic carbon. In Encyclopedia of Earth, edited by Cleveland, C.J. Environmental
Information Coalition, National Council for Science and the Environment,
Washington, D.C. Accessed on 13 June 2009.
Hibbard, K.A., Law, B.E., Reichstein, M. & Sulzman, J. 2005. An analysis of soil
respiration across northern hemisphere temperate ecosystems. Biogeochemistry 73: 29-70.
Houghton, R. & Hackler, J. 1999. Emissions of carbon
from forestry and land use change in tropical Asia. Glob. Chang. Biol. 5(4):
481-492.
Jandl, R., Lindner, M., Vesterdal,
L., Bauwens, B., Baritz,
R., Hagedorn, F., Johnson, D.W., Minkkinen,
K. & Byrne, K.A. 2007. How
strongly can forest management influence soil carbon sequestration? Geoderma 137: 253-268.
Jin, H.M., Sun, O.J., Luo, Z.K. &
Liu, J. 2009. Dynamics of soil
respiration in sparse Ulmus pumila woodland under semi-arid climate. Ecological Research 24(4): 731-739.
Kato, J., Tadaki, Y. & Ogawa,
H. 1978. Biomass and growth increment studies in Pasoh Forest, Malaysia. Nat. J. 30: 211-224.
Lee, M., Nakane,
K., Nakatsubo, T. & Koizumi, H. 2003. Seasonal changes in the contribution of root respiration to
total soil respiration in a cool-temperate deciduous forest. Plant and Soil 255(1):
311-318.
Manokaran, N., LaFrankie,
J.V., Kochummen, K.M., Quah,
E.S., Klahn, J.E., Ashton, P.S. & Hubbell, S.P.
1990. Methodology for the
fifty-hectare research plot at Pasoh Forest reserve. Res. Pam. For. Res. Inst. Malaysia 104: 1-69.
McCarthy, D.R. & Brown, K.J. 2006. Soil respiration
responses to topography, canopy cover, and prescribed burning in an oakhickory forest in southeastern Ohio. For. Ecol.
Manage. 237: 94-102.
Ogawa, J.M., Sandeno, J.L. & Mathre, J.H. 1963. Comparisons in development and chemical
control of decay organism on mechanical and hand harvested stone fruits. Plant
Das. Rep. 47: 129-133.
Raich, J.W., Potter, C.S. & Bhagawati,
D. 2002. Interannual variability in global soil respiration, 1980-1994. Global
Change Biology 8: 800-812.
Raich, J.W. & Tufekcioglu, A. 2000.
Vegetation and soil respiration: Correlations and controls. Biogeochemistry 48:
71-90.
Raich, J.W. & Schlesinger, W.H. 1992. The
global carbon dioxide flux in soil respiration and its relationship to
vegetation and climate. Tellus 44B:
81-99.
Ravindranath, N.H., Somasekhar,
B.S. & Gadgil, M. 1997. Carbon flows in Indian forest. Climate Change 35:
297-320.
Saiz, G., Green, C., Butterbach-Bahl,
K., Kiese, R., Avitabile,
V. & Farrell, E.P. 2006. Seasonal
and spatial variability of soil respiration in four Sitka spruce stands. Plant
and Soil 287(1-2): 161-176.
Sartori, F., Lal, R., Ebinger, M.H. & Eaton, J.A. 2007. Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia
Plateau, Oregon, USA. Agric. Ecosyst. Environ. 122:
325-339.
Shi, Z., Li, Y.Q., Wang, S.J., Wang, G.B., Ruan, H.H., He, R., Tang, Y.F. & Zhang, Z.X. 2009. Accelerated soil CO2 efflux
after conversion from secondary oak forest to pine plantation in southeastern
China. Ecol. Res. 24: 1257-1265.
Sollins, P., Glassman, C., Paul, E.A.,
Swanston, C., Lajtha, K., Heil,
J.W., Elliott, E.T. & Robertson, P.G. 1999. Soil Carbon and Nitrogen: Pools and Fractions. Standard soil methods for long-term ecological research. Oxford: Oxford University Press pp. 89-105.
Tanaka, K. & Hashimoto, S. 2006. Plant canopy effects on
soil thermal and hydrological properties and soil respiration. Ecol. Model 196:
32-44.
Tang, X., Zhou, G., Liu, S., Zhang, D.,
Liu, S. & Li, J. 2006. Dependence of soil respiration on soil temperature and soil
moisture in successional forests in Southern China. Journal of
Integrative Plant Biology 48(6): 654-663.
Teklay, T. & Chang, S.X. 2008. Temporal changes in soil carbon
and nitrogen storage in a hybrid poplar chronosequence in northern Alberta. Geoderma 144:
613-619.
Wu, Y.Q., Liu, G.H., Fu, B.J., Liu, Z.F. & Hu, H.F.
2006. Comparing soil CO2 emission
in pine plantation and oak shrub: Dynamics and correlations. Ecol. Res.
21: 840-848.
*Pengarang untuk surat-menyurat; email: amakmom@upm.edu.my
|