Sains Malaysiana 43(12)(2014): 1865–1871
Development of Generalized Feed Forward Network for
Predicting Annual Flood (Depth)
of a Tropical River
(Pembangunan Rangkaian Suapan ke Hadapan Menyeluruh untuk Meramalkan
Banjir Tahunan (Kedalaman)
Sungai Tropika)
MOHSEN SALARPOUR1, ZULKIFLI YUSOP2*, MILAD JAJARMIZADEH1 & FADHILAH YUSOF3
1Faculty of Civil
Engineering, Department of Hydraulic and Hydrology
Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
2Water Research
Alliance, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
3Faculty of Science,
Department of Mathematics, Universiti Teknologi Malaysia
81310 Skudai, Johor, Malaysia
Diserahkan: 17 Ogos 2013/Diterima:
16 April 2014
ABSTRACT
The modeling of rainfall-runoff relationship in a watershed is
very important in designing hydraulic structures, controlling flood and
managing storm water. Artificial Neural Networks (ANNs) are known as having
the ability to model nonlinear mechanisms. This study aimed at developing a
Generalized Feed Forward (GFF) network model for predicting annual flood
(depth) of Johor River in Peninsular Malaysia. In order to avoid over training,
cross-validation technique was performed for optimizing the model. In addition,
predictive uncertainty index was used to protect of over parameterization. The
governing training algorithm was back propagation with momentum term and
tangent hyperbolic types was used as transfer function for hidden and output
layers. The results showed that the optimum architecture was derived by linear
tangent hyperbolic transfer function for both hidden and output layers. The
values of Nash and Sutcliffe (NS) and root mean square error (RMSE)
obtained 0.98 and 5.92 for the test period. Cross validation evaluation showed
9 process elements is adequate in hidden layer for optimum generalization by
considering the predictive uncertainty index obtained (0.14) for test period
which is acceptable.
Keywords: Annual flood; artificial neural networks; cross
validation; generalized feed forward; Johor River; predictive uncertainty
ABSTRAK
Pemodelan hubungan curahan hujan-aliran air di satu kawasan tadahan adalah sangat penting dalam mereka bentuk struktur hidraulik, mengawal banjir dan menguruskan air ribut. Rangkaian neural tiruan (ANNs) dikenal pasti mempunyai keupayaan untuk memperaga mekanisme tak linear. Kajian ini bertujuan untuk membangunkan model rangkaian suapan ke hadapan menyeluruh (GFF) untuk meramalkan banjir tahunan (kedalaman) Sungai Johor di Semenanjung Malaysia. Untuk mengelakkan latihan berlebihan, teknik pengesahan silang telah dijalankan bagi mengoptimumkan model tersebut. Di samping itu, indeks ketidakpastian ramalan digunakan untuk melindungi daripada pemparameteran berlebihan. Algoritma latihan pentadbiran adalah perambatan balik terma momentum dan jenis tangen hiperbolik digunakan sebagai fungsi perpindahan bagi lapisan tersembunyi dan output. Hasil kajian menunjukkan bahawa seni bina yang optimum diperoleh melalui fungsi perpindahan linear tangen hiperbolik bagi lapisan tersembunyi dan output. Nilai Nash dan Sutcliffe (NS) serta punca min ralat kuasa dua (RMSE) memperoleh 0.98 dan 5.92 bagi masa ujian. Penilaian pengesahan silang menunjukkan 9 proses elemen adalah mencukupi dalam lapisan tersembunyi untuk pengitlakan yang
optimum dengan mengambil kira ramalan indeks ketidaktentuan yang diperoleh 0.14 dalam masa ujian adalah diterima.
Kata kunci: Banjir tahunan; ketidakpastian ramalan; pengesahan silang; rangkaian neural tiruan; suapan ke hadapan menyeluruh; Sungai Johor
RUJUKAN
Altunkaynak, A. 2007. Forecasting surface water level fluctuations of Lake Van by
artificial neural networks. Water Resources Management 21(2): 399-408.
ASCE. 2000a. Artificial neural
networks in hydrology. I: preliminary concepts. Journal of Hydrologic
Engineering 5(2): 115-123.
ASCE. 2000b. Artificial neural
networks in hydrology. I: hydrologic applications. Journal of Hydrologic
Engineering 5(2): 124-137.
Agarwal, A., Mishra, S.K., Ram, S.
& Singh, J.K. 2006. Simulation of runoff
and sediment yield using artificial neural networks. Biosystems Engineering 94(4): 597-613.
Bishop, C.M. 1995. Neural Networks for
Pattern Recognition. Oxford: Clarendon Press.
Bowden, G.J., Dandy, G.C. & Maier,
H.R. 2005. Input determination for neural network
models in water resources applications. Part 1-background and methodology. Journal
of Hydrology 301(1): 75-92.
Can, I. 2002. A new improved Na/K geothermometer by artificial neural networks. Geothermics 31(6):
751-760.
Dawson, C.W. & Wilby, R. 1998. An artificial neural network approach to rainfall-runoff
modelling. Hydrological Sciences Journal 43(1): 47-66.
De Vos, N.J. & Rientjes, T.H.M. 2005. Constraints of artificial neural
networks for rainfall-runoff modelling: Trade-offs in hydrological state
representation and model evaluation. Hydrology and Earth System Sciences
Discussions 2(1): 365-415.
Elshorbagy, A., Simonovic, S.P. & Panu, U.S. 2000. Performance evaluation
of artificial neural networks for runoff prediction. Journal of Hydrologic
Engineering 5(4): 424-427.
El-Shafie, A.
& Noureldin, A. 2010. Generalized versus non-generalized neural network model for
multi-lead inflow forecasting at Aswan High Dam. Hydrology and Earth System
Sciences Discussions 7(5): 7957-7993.
El-Shafie,
A., Noureldin, A., Taha,
M.R. & Hussain, A. 2011. Dynamic versus static neural network model for rainfall forecasting
at Klang River Basin, Malaysia. Hydrology
and Earth System Sciences Discussions 8(4): 6489-6532.
Ghumman, A.R., Ghazaw, Y.M., Sohail, A.R. & Watanabe, K. 2011. Runoff
forecasting by artificial neural network and conventional model. Alexandria
Engineering Journal 50(4): 345-350.
Jajarmizadeh, M., Harun, S., Abdullah, R. & Salarpour, M. 2012a. Using soil and water assessment tool for flow simulation and assessment of
sensitive parameters applying SUFI-2 algorithm. Caspian Journal of Applied
Sciences Research 2(1): 37-47.
Jajarmizadeh, M., Harun, S. & Salarpour, M. 2012b. A review on theoretical consideration and types of models in hydrology. Journal of Environmental Science and Technology 5(5): 249-261.
Jain, A.K., Mao, J. & Mohiuddin, K.M. 1996. Artificial neural network: A tutorial. IEEE - Computer 29(3): 31-44.
Jamaludin Suhaila, Sayang Mohd Deni, Wan Zawiah Wan Zin & Abdul Aziz Jemain 2010. Trends in Peninsular Malaysia rainfall data
during the Southwest Monsoon and Northeast Monsoon seasons: 1975-2004. Sains Malaysiana39(4):
533-542.
Wu, J.S., Han, J., Annambhotla, S.
& Bryant, S. 2005. Artificial neural networks for
forecasting watershed runoff and stream flows. Journal of Hydrologic
Engineering 10(3): 216-222.
Parasuraman, K., Elshorbagy, A. & Carey,
S.K. 2006. Spiking modular neural networks: A neural network modeling approach
for hydrological processes. Water Resources Research 42(5). DOI:
10.1029/2005WR004317.
Kişi, Ö. 2009. Neural networks and wavelet conjunction model for
intermittent streamflow forecasting. Journal of Hydrologic Engineering 14(8):
773-782.
Kişi, Ö. 2008. River flow forecasting and estimation
using different artificial neural network techniques. Hydrological
Resources 39(1): 27-40.
Kişi, Ö. 2007. Stream flow forecasting using different
artificial neural network algorithms. Journal of Hydrologic
Engineering 12(5): 532-539.
Kişi, Ö. 2006. Evapotranspiration estimation using feed-forward neural
networks. Nordic Hydrology 37(3): 247-260.
Kişi, Ö., Moghaddam Nia, A.R., Ghafari Gosheh,
M., Jamalizadeh Tajabadi,
M.R. & Ahmadi, A. 2012. Intermittent stream flow forecasting by using several data driven
techniques. Water Resources Management 26(2): 457-474.
Maier, H.R. & Dandy, G.C. 2000. Neural networks for the
prediction and forecasting of water resources variables: A review of modeling
issues and applications. Environ. Modeling and Software 15(1): 101-124.
Menhaj, M.B. 2010. Computational
Intelligence, Fundamentals of Neural Networks. Iran: Amir Kabir University Publication.
Mutlu, E., Chaubey,
I., Hexmoor, H. & Bajwa,
S.G. 2008. Comparison of artificial neural
network models for hydrologic predictions at multiple gauging stations in an
agricultural watershed. Hydrological Process 22(26): 5097-5106.
Nayebi, M., Khalili,
D., Amin, S. & Zand-Parsa, S.H. 2006. Daily stream flow prediction capability
of artificial neural networks as influenced by
minimum air temperature data. Bio System Engineering 95(4): 557-567.
Nourani, V. & Kalantari, O. 2010. Integrated
artificial neural network for spatiotemporal modeling of
rainfall-runoff-sediment processes. Environmental Engineering Science 27(5): 411-422.
Rajurkar, M.P., Kothyari, U.C. & Chaube, U.C. 2004. Modeling of daily rainfall-runoff
relationship with artificial neural network. Journal of Hydrology 285(1):
96-113.
Rezaeian Zadeh, M.,
Amin, S., Khalili, D. & Singh, P.V. 2010. Daily outflow prediction by multi-layer perceptron with
logistic sigmoid and tangent sigmoid activation functions. Water Resources
Management 24(11): 2673-2688.
Shamsudin, R., Saad,
P. & Shabri, A. 2011. River flow time series using least squares support vector
machines. Hydrology and Earth System Science 15(6): 1835-1852.
Senthil Kumar, A.R., Sudheer,
K.P., Jain, S.K. & Agarwal, P.K. 2005. Rainfall-runoff modeling using artificial neural networks: Comparison of
network types. Hydrological Process 19(6): 1277-1291.
Singh, A., Imtiyaz,
M., Isaac, R.K. & Denis, D.M. 2012. Comparison of soil and water assessment tool (SWAT) and multilayer perceptron
(MLP) artificial neural network for predicting sediment yield in the Nagwa agricultural watershed in Jharkhand, India. Agricultural
Water Management 104: 113-120.
Sorayya, M., Aishah,
S. & Mohd, B. 2012. Supervised and unsupervised artificial
neural networks for analysis of diatom abundance in Tropical Putrajaya Lake,
Malaysia. Sains Malaysiana 41(8): 939-947.
Srivastava, P., McNair, J.N. &
Johnson, T.E. 2006. Comparison of
process-based and artificial neural network approaches for stream flow modeling
in an agricultural watershed. Journal of the American Water Resources
Association 42(3): 545-563.
Tokar, A.S. & Johnson, P.A. 1999. Rainfall-runoff
modeling using artificial neural networks. Journal of Hydrologic
Engineering 4(3): 232-239.
Tombul, M. & Ersin,
O. 2006. Modeling of rainfall-runoff
relationship at the semi-arid small catchments using artificial neural
networks. Lecture Notes in Control and Information Sciences 344:
309-318.
World Meteorological Organization. 1975. Inter-comparison of conceptual models used in
operational hydrological forecasting. World meteorological
Organization. Techinical report 429, Geneva,
Switzerland.
Wahidah Sanusi. & Kamarulzaman Ibrahim. 2012. Application of loglinear models in stimating wet
category in monthly rainfall. Sains Malaysiana41(11): 1345-1353.
Xu, Q., Ren, L., Yu, Z., Yang, B. & Wang, G. 2008. Rainfall-runoff modeling at daily scale with artificial neural
networks, Fourth International Conference on Natural Computation Oct
18-20. Jinan.
*Pengarang untuk surat-menyurat; email: zulyusop@utm.my
|