Sains Malaysiana 43(12)(2014): 1951–1959

 

Modified Exponential-rational Methods for the Numerical Solution of First Order

Initial Value Problems

(Kaedah Eksponen-Nisbah Terubah Suai bagi Penyelesaian Masalah Nilai Awal Peringkat

Pertama Secara Berangka)

 

TEH YUAN YING*, ZURNI OMAR & KAMARUN HIZAM MANSOR

 

School of Quantitative Sciences, College of Arts and Sciences, Universiti Utara Malaysia

06010 UUM Sintok, Kedah Darul Aman, Malaysia

 

Diserahkan: 1 Januari 2014/Diterima: 17 April 2014

 

ABSTRACT

Exponentially-fitted numerical methods are appealing because L-stability is guaranteed when solving initial value problems of the form y' = λy, y(a) = η, λ , Re(λ) < 0. Such numerical methods also yield the exact solution when solving the above-mentioned problem. Whilst rational methods have been well established in the past decades, most of them are not ‘completely’ exponentially-fitted. Recently, a class of one-step exponential-rational methods (ERMs) was discovered. Analyses showed that all ERMs are exponentially-fitted, hence implying L-stability. Several numerical experiments showed that ERMs are more accurate than existing rational methods in solving general initial value problem. However, ERMs have two weaknesses: every ERM is non-uniquely defined and may return complex values. Therefore, the purpose of this study was to modify the original ERMs so that these weaknesses will be overcome. This study discusses the generalizations of the modified ERMs and the theoretical analyses involved such as consistency, stability and convergence. Numerical experiments showed that the modified ERMs and the original ERMs are found to have comparable accuracy; hence modified ERMs are preferable to original ERMs.

 

Keywords: Exponential function; initial value problem; modified exponential-rational method; problem whose solution possesses singularity; rational function

 

ABSTRAK

Kaedah berangka yang bersesuaian secara eksponen adalah menarik kerana kestabilan L adalah terjamin apabila menyelesaikan masalah nilai awal yang berbentuk y= λy, y(a) = η, λ , Re(λ) < 0. Kaedah berangka yang sedemikian juga menghasilkan penyelesaian tepat apabila menyelesaikan masalah yang dinyatakan sebelum ini. Walaupun kaedah nisbah telah menjadi mantap dalam beberapa dekad yang lalu, sebahagian besar daripada kaedah ini tidak bersesuaian secara eksponen sepenuhnya. Baru-baru ini, suatu kelas kaedah eksponen-nisbah satu-langkah (ERM) telah ditemui. Beberapa analisis menunjukkan bahawa semua ERM adalah bersesuaian secara eksponen, maka mengimplikasikan kestabilan L. Beberapa pengujian berangka menunjukkan bahawa ERM adalah lebih tepat berbanding dengan kaedah nisbah yang sedia ada dalam menyelesaikan masalah nilai awal umum. Walau bagaimanapun, ERM mempunyai dua kelemahan: setiap ERM tidak ditakrifkan secara unik dan boleh mengembalikan nilai-nilai yang kompleks. Oleh itu, tujuan kajian ini adalah untuk mengubah suai ERM yang asal supaya kelemahan tersebut dapat diatasi. Kajian ini membincangkan pengitlakan bagi ERM yang diubah suai dan analisis teori yang terlibat seperti kekonsistenan, kestabilan dan penumpuan. Pengujian secara berangka menunjukkan bahawa ERM yang telah diubah suai dan ERM yang asal didapati mempunyai ketepatan yang setara; maka ERM yang diubah suai lebih sesuai berbanding dengan ERM yang asal.

 

Kata kunci: Fungsi eksponen; fungsi nisbah; kaedah eksponen-nisbah diubah suai; masalah dengan penyelasaian yang mempunyai ketunggalan; masalah nilai awal

 

RUJUKAN

Butcher, J.C. 2008. Numerical Methods for Ordinary Differential Equations. 2nd ed. West Sussex: John Wiley & Sons, Ltd.

Fatunla, S.O. 1988. Numerical Methods for Initial Value Problems in Ordinary Differential Equations. San Diego: Academic Press, Inc.

Fatunla, S.O. 1986. Numerical treatment of singular initial value problems. Computers and Mathematics with Applications 12B(5/6): 1109-1115.

Fatunla, S.O. 1982. Non-linear multistep methods for initial value problems. Computers and Mathematics with Applications 8(3): 231-239.

Ikhile, M.N.O. 2004. Coefficients for studying one-step rational schemes for IVPs in ODEs: III. Computers and Mathematics with Applications 47: 1463-1475.

Ikhile, M.N.O. 2002. Coefficients for studying one-step rational schemes for IVPs in ODEs: II. Computers and Mathematics with Applications 44: 545-557.

Ikhile, M.N.O. 2001. Coefficients for studying one-step rational schemes for IVPs in ODEs: I. Computers and Mathematics with Applications 41: 769-781.

Lambert, J.D. 1991. Numerical Methods for Ordinary Differential Systems. Chichester: John Wiley & Sons, Ltd.

Lambert, J.D. 1974. Two unconventional classes of methods for stiff systems. In Stiff Differential Equations, edited by Willoughby, R.A. New York: Plenum Press.

Lambert, J.D. 1973. Computational Methods in Ordinary Differential Equations. London: John Wiley & Sons, Ltd.

Lambert, J.D. & Shaw, B. 1965. On the numerical solution of y' = f (x, y) by a class of formulae based on rational approximation. Mathematics of Computation 19(91): 456-462.

Luke, Y.L., Fair, W. & Wimp, J. 1975. Predictor-corrector formulas based on rational interpolants. Computers and Mathematics with Applications 1(1): 3-12.

Okosun, K.O. & Ademiluyi, R.A. 2007a. A two-step second order inverse polynomial methods for integration of differential equations with singularities. Research Journal of Applied Sciences 2(1): 13-16.

Okosun, K.O. & Ademiluyi, R.A. 2007b. A three step rational methods for integration of differential equations with singularities. Research Journal of Applied Sciences 2(1): 84-88.

Ramos, H. 2007. A non-standard explicit integration scheme for initial-value problems. Applied Mathematics and Computation 189: 710-718.

Teh, Y.Y. & Yaacob, N. 2013a. A new class of rational multistep methods for solving initial value problem. Malaysian Journal of Mathematical Sciences 7(1): 31-57.

Teh, Y.Y. & Yaacob, N. 2013b. One-step exponential-rational methods for the numerical solution of first order initial value problems. Sains Malaysiana 42(6): 845-853.

Teh, Y.Y., Yaacob, N. & Alias, N. 2011. A new class of rational multistep methods for the numerical solution of first order initial value problems. Matematika 27(1): 59-78.

Teh, Y.Y., Yaacob, N. & Alias, N. 2009. Numerical comparison of some explicit one-step rational methods in solving initial value problems. Paper presented at the 5th Asian Mathematical Conference. 22-26 June. Kuala Lumpur, Malaysia.

van Niekerk, F.D. 1988. Rational one-step methods for initial value problems. Computers and Mathematics with Applications 16(12): 1035-1039.

van Niekerk, F.D. 1987. Non-linear one-step methods for initial value problems. Computers and Mathematics with Applications 13(4): 367-371.

Wambecq, A. 1976. Nonlinear methods in solving ordinary differential equations. Journal of Computational and Applied Mathematics 2(1): 27-33.

Wu, X.Y. & Xia, J.L. 2001. Two low accuracy methods for stiff systems. Applied Mathematics and Computation 123: 141-153.

Yaacob, N., Teh, Y.Y. & Alias, N. 2010. A new class of 2-step rational multistep methods. Jurnal KALAM 3(2): 26-39.

Yaakub, A.R. & Evans, D.J. 2003. New L-stable modified trapezoidal methods for the initial value problems. International Journal of Computer Mathematics 80(1): 95-104.

 

*Pengarang untuk surat-menyurat; email: yuanying@uum.edu.my

 

 

   

 

sebelumnya