Sains Malaysiana 43(1)(2014): 137–144

 

Triethanolamine - Solution for Rapid Hydrothermal Synthesis of Titanate Nanotubes

(Trietanolamina – Penyelesaian untuk Sintesis Tiub Nano Titanat melalui Hidroterma Pantas)

 

 

M.N. AN'AMT1, N.M. HUANG*2, S. RADIMAN3, H.N. LIM4 & M.R. MUHAMAD5

 

1Fakulti Agro Industri dan Sumber Asli, Universiti Malaysia Kelantan, Karung Berkunci 36, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia

 

2Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science

University of Malaya, 50603 Kuala Lumpur, Malaysia

 

 

3School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, Malaysia

 

4Department of Chemistry, Faculty of Science, Universiti Putra Malaysia

43400 UPM Serdang, Selangor, Malaysia

 

5Chancellery Office, Multimedia University, Jalan Multimedia, 63100 Cyberjaya

Selangor Darul Ehsan, Malaysia

 

Diserahkan: 9 Oktober 2013/Diterima: 10 Mac 2013

 

ABSTRACT

Titanate nanotubes were prepared by a rapid hydrothermal method in the presence of triethanolamine (TEA) using TiO2 nanoparticles as a precursor. The addition of TEA significantly reduced the formation time of the titanate nanotubes from 24 to 6 h. The crystalline structure of the titanate nanotubes was revealed to be H2Ti2O5 through the X-ray diffraction (XRD) measurement. The morphology of the titanate nanotubes was confirmed using transmission electron microscopy (TEM) while the surface area was characterized using Brunauer-Emmett-Teller (BET) surface area analysis. The titanate nanotubes produced were several hundred nanometers in length and had an average outer diameter of ~ 11.5 nm, inner diameter of ~5.0 nm, interlayer spacing of 0.93 nm and surface area of >250 m2/g. The photocatalytic activity of the titanate nanotubes was studied using methylene blue as a model dye; the titanate nanotubes showed better photocatalytic performance as compared to TiO2 nanoparticles.

 

Keywords: Hydrothermal; photocatalyst; titanate nanotubes

 

ABSTRAK

Tiub nano titanat telah disediakan melalui kaedah hidroterma pantas dengan kehadiran trietanolamina (TEA) menggunakan partikel TiO2 sebagai bahan pemula. Penambahan TEA telah mengurangkan masa pembentukan tiub nano titanat secara berkesan dari 24 jam ke 6 jam. Struktur hablur tiub nano titanat ialah H2Ti2O5 berdasarkan pengukuran difraksi sinar-X (XRD). Morfologi tiub nano titanat telah dikenal pasti menggunakan mikroskop elektron transmisi (TEM) sementara luas permukaannya diperoleh daripada analisis luas permukaan Brunauer-Emmett-Teller (BET). Tiub nano titanat yang dihasilkan adalah beberapa ratus nanometer panjang serta mempunyai purata diameter luar ~ 11.5 nm, diameter dalam ~5.0 nm, ruang antara lapisan 0.93 nm dan luas permukaan >250 m2/g. Aktiviti fotokatalitik tiub nano titanat telah dikaji menggunakan metilena biru sebagai pewarna modal; tiub nano titanat menunjukkan kuasa fotokalitik yang lebih baik berbanding dengan nanopartikel TiO2.

 

Kata kunci: Fotokatalis; hidroterma; tiub nano titanat

RUJUKAN

Bai, F., Deng, Z.B., Gao, X., Chen, X.H. & Cai, Q. 2002. Enhanced brightness and efficiency in organic electroluminescent device using TiO2 self-assembled layers. International Conference on Science and Technology of Synthetic Metals (ICSM 2002). Elsevier Science Sa, Shanghai, Peoples R China, 1139.

Barnard, A.S., Snook, I.K. & Russo, S.P. 2007. Bonding and structure in BxNy nanotubes (x,y = 1,2). Journal of Materials Chemistry 17: 2892-2898.

Bavykin, D.V., Parmon, V.N., Lapkin, A.A. & Walsh, F.C. 2004. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry 14: 3370-3377.

Brunauer, S., Emmett, P.H. & Teller, E. 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 60: 309-315.

Buchanan, M., Egelhaaf, S.U. & Cates, M.E. 2000. Dynamics of interface instabilities in nonionic lamellar phases. Langmuir 16: 3718-3726.

Chen, X., Schriver, M., Suen, T. & Mao, S.S. 2007. Fabrication of 10 nm diameter TiO2 nanotube arrays by titanium anodization. Thin Solid Films 515: 8511-8514.

Das, K., Panda, S.K. & Chaudhuri, S. 2008. Solvent-controlled synthesis of TiO2 1D nanostructures: Growth mechanism and characterization. Journal of Crystal Growth 310: 3792-3799.

Deb, S.K. 2005. Dye-sensitized TiO2 thin-film solar cell research at the National Renewable Energy Laboratory (NREL). Solar Energy Materials and Solar Cells 88: 1-10.

Eswaramoorthi, I. & Hwang, L.P. 2007. Anodic titanium oxide: A new template for the synthesis of larger diameter multi-walled carbon nanotubes. Diamond and Related Materials 16: 1571-1578.

Gratzel, M. 2003. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4: 145-153.

Guo, Y., Lee, N.H., Oh, H.J., Yoon, C.R., Park, K.S., Lee, W.H., Li, Y., Lee, H.G., Lee, K.S. & Kim, S.J. 2008. Preparation of titanate nanotube thin film using hydrothermal method. Thin Solid Films 516: 8363-8371.

Hong, D.U., Han, C.H., Park, S.H., Kim, I.J., Gwak, J., Han, S.D. & Kim, H.J. 2009. Recovery properties of hydrogen gas sensor with Pd/titanate and Pt/titanate nanotubes photo-catalyst by UV radiation from catalytic poisoning of H2S. Current Applied Physics 9: 172-178.

Huang, C., Liu, X., Kong, L., Zhou, H., Liu, Y., Qiu, J. & Wang, Y. 2006. Hydrothermal synthesis of vanadium oxide nanotubes by a facile route. Rare Metals 25: 88-93.

Iijima, S. 1991. Synthesis of carbon nanotubes. Nature 354: 56-58.

Jin, Z., Zhang, X., Li, Y., Li, S. & Lu, G. 2007. 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catalysis Communications 8: 1267-1273.

Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. & Niihara, K. 1998. Formation of titanium oxide nanotube. Langmuir 14: 3160-3163.

Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. & Niihara, K. 1999. Titania nanotubes prepared by chemical processing. Advanced Materials 11: 1307-1311.

Lavayen, V., Mirabal, N., O’Dwyer, C., Santa Ana, M.A., Benavente, E., Sotomayor Torres, C.M. & González, G. 2007. The formation of nanotubes and nanocoils of molybdenum disulphide. Applied Surface Science 253: 5185-5190.

Lee, C.K., Lyu, M.D., Liu, S.S. & Chen, H.C. 2009. The synthetic parameters for the preparation of nanotubular titanate with highly photocatalytic activity. Journal of the Taiwan Institute of Chemical Engineers 40: 463-470.

Li, B., Wang, L.D., Kang, B.N., Wang, P. & Qiu, Y. 2006. Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells 90: 549-573.

Mardare, D., Iftimie, N. & Luca, D. 2007. TiO2 thin films as sensing gas materials. 4th Functional and Nanostructured Materials Conference. Elsevier Science Bv, Gdansk, POLAND, 4396.

Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K. & Grimes, C.A. 2006. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energy Materials and Solar Cells 90: 2011-2075.

Nakahira, A., Kubo, T. & Numako, C. 2010. Formation mechanism of TiO2-derived titanate nanotubes prepared by the hydrothermal process. Inorganic Chemistry 49: 5845- 5852.

Pan, K., Zhang, Q., Wang, Q., Liu, Z., Wang, D., Li, J. & Bai, Y. 2007. The photoelectrochemical properties of dye-sensitized solar cells made with TiO2 nanoribbons and nanorods. Thin Solid Films 515: 4085-4091.

Pavasupree, S., Ngamsinlapasathian, S., Nakajima, M., Suzuki, Y. & Yoshikawa, S. 2006. Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure. Journal of Photochemistry and Photobiology A: Chemistry 184: 163-169.

Peng, Y.P., Lo, S.L., Ou, H.H. & Lai, S.W. 2010. Microwave-assisted hydrothermal synthesis of N-doped titanate nanotubes for visible-light-responsive photocatalysis. Journal of Hazardous Materials 183: 754-758.

Qamar, M., Yoon, C.R., Oh, H.J., Lee, N.H., Park, K., Kim, D.H., Lee, K.S., Lee, W.J. & Kim, S.J. 2008. Preparation and photocatalytic activity of nanotubes obtained from titanium dioxide. Catalysis Today 131: 3-14.

Seo, H.K., Kim, G.S., Ansari, S.G., Kim, Y.S., Shin, H.S., Shim, K.H. & Kyung, E. 2008. A study on the structure/phase transformation of titanate nanotubes synthesized at various hydrothermal temperatures. Solar Energy Materials and Solar Cells 92: 1553-1559.

Song, L., Zhang, S., Chen, B., Ge, J. & Jia, X. 2010. A hydrothermal method for preparation of (alpha)-Fe2O3 nanotubes and their catalytic performance for thermal decomposition of ammonium perchlorate. Colloids and Surfaces A: Physicochemical and Engineering Aspect 360: 1-5.

Song, Z., Xu, H., Li, K., Wang, H. & Yan, H. 2005. Hydrothermal synthesis and photocatalytic properties of titanium acid H2Ti2O5.H2O nanosheets. Journal of Molecular Catalysis A: Chemical 239: 87-91.

Sun, S., Zou, Z. & Min, G. 2009. Synthesis of tungsten disulfide nanotubes from different precursor. Materials Chemistry and Physics 114: 884-888.

Wang, B., Shi, Y. & Xue, D. 2007. Large aspect ratio titanate nanowire prepared by monodispersed titania submicron sphere via simple wet-chemical reactions. Journal of Solid State Chemistry 180: 1028-1037.

Wu, X., Jiang, Q.Z., Ma, Z.F. & Shangguan, W.F. 2007. Tile overlapping model for synthesizing TiO2 nanotubes by microwave irradiation. Solid State Communications 143: 343-347.

Xiong, L., Sun, W., Yang, Y., Chen, C. & Ni, J. 2010. Heterogeneous photocatalysis of methylene blue over titanate nanotubes: Effect of adsorption. Journal of Colloid Interface Science 356: 211-216.

Yamashita, H., Nakao, H., Takeuchi, M., Nakatani, Y. & Anpo, M. 2003. Coating of TiO2 photocatalysts on super-hydrophobic porous teflon membrane by an ion assisted deposition method and their self-cleaning performance. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 206: 898-901.

 

*Corresponding author; email: huangnayming@gmail.com

 

 

sebelumnya