Sains Malaysiana 43(1)(2014): 137–144
Triethanolamine - Solution for Rapid Hydrothermal Synthesis
of Titanate Nanotubes
(Trietanolamina –
Penyelesaian untuk Sintesis Tiub Nano Titanat melalui Hidroterma Pantas)
M.N.
AN'AMT1, N.M.
HUANG*2, S.
RADIMAN3, H.N. LIM4 & M.R.
MUHAMAD5
1Fakulti Agro Industri dan Sumber Asli, Universiti
Malaysia Kelantan, Karung Berkunci 36, Pengkalan Chepa, 16100 Kota
Bharu, Kelantan, Malaysia
2Low Dimensional Materials Research Centre,
Department of Physics, Faculty of Science
University of Malaya, 50603 Kuala Lumpur,
Malaysia
3School of Applied Physics, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia
4Department of Chemistry,
Faculty of Science, Universiti Putra Malaysia
43400 UPM Serdang, Selangor, Malaysia
5Chancellery Office, Multimedia University, Jalan Multimedia, 63100
Cyberjaya
Selangor Darul Ehsan, Malaysia
Diserahkan: 9 Oktober 2013/Diterima: 10
Mac 2013
ABSTRACT
Titanate nanotubes were prepared by
a rapid hydrothermal method in the presence of triethanolamine (TEA)
using TiO2 nanoparticles as a precursor. The addition of TEA significantly reduced the formation time of the titanate
nanotubes from 24 to 6 h. The crystalline structure of the titanate nanotubes
was revealed to be H2Ti2O5 through the X-ray diffraction (XRD) measurement. The morphology
of the titanate nanotubes was confirmed using transmission electron microscopy
(TEM) while the surface area was
characterized using Brunauer-Emmett-Teller (BET)
surface area analysis. The titanate nanotubes produced were several hundred
nanometers in length and had an average outer diameter of ~ 11.5 nm, inner
diameter of ~5.0 nm, interlayer spacing of 0.93 nm and surface area of >250
m2/g. The
photocatalytic activity of the titanate nanotubes was studied using methylene
blue as a model dye; the titanate nanotubes showed better photocatalytic
performance as compared to TiO2 nanoparticles.
Keywords: Hydrothermal;
photocatalyst; titanate nanotubes
ABSTRAK
Tiub nano titanat telah disediakan
melalui kaedah hidroterma pantas dengan kehadiran trietanolamina (TEA) menggunakan partikel TiO2 sebagai bahan pemula. Penambahan TEA telah mengurangkan masa pembentukan tiub nano titanat secara
berkesan dari 24 jam ke 6 jam. Struktur hablur tiub nano titanat ialah H2Ti2O5 berdasarkan pengukuran difraksi sinar-X (XRD).
Morfologi tiub nano titanat telah dikenal pasti menggunakan mikroskop elektron
transmisi (TEM) sementara luas
permukaannya diperoleh daripada analisis luas permukaan Brunauer-Emmett-Teller
(BET). Tiub nano titanat yang
dihasilkan adalah beberapa ratus nanometer panjang serta mempunyai purata
diameter luar ~ 11.5 nm, diameter dalam ~5.0 nm, ruang antara lapisan 0.93 nm
dan luas permukaan >250 m2/g.
Aktiviti fotokatalitik tiub nano titanat telah dikaji menggunakan metilena biru
sebagai pewarna modal; tiub nano titanat menunjukkan kuasa fotokalitik yang
lebih baik berbanding dengan nanopartikel TiO2.
Kata
kunci: Fotokatalis; hidroterma; tiub nano titanat
RUJUKAN
Bai, F.,
Deng, Z.B., Gao, X., Chen, X.H. & Cai, Q. 2002. Enhanced brightness and
efficiency in organic electroluminescent device using TiO2 self-assembled layers. International Conference on Science and
Technology of Synthetic Metals (ICSM 2002). Elsevier Science Sa, Shanghai,
Peoples R China, 1139.
Barnard,
A.S., Snook, I.K. & Russo, S.P. 2007. Bonding and structure in BxNy nanotubes (x,y = 1,2). Journal of Materials
Chemistry 17: 2892-2898.
Bavykin,
D.V., Parmon, V.N., Lapkin, A.A. & Walsh, F.C. 2004. The effect of
hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry 14: 3370-3377.
Brunauer,
S., Emmett, P.H. & Teller, E. 1938. Adsorption of gases in multimolecular
layers. Journal of the American Chemical Society 60: 309-315.
Buchanan,
M., Egelhaaf, S.U. & Cates, M.E. 2000. Dynamics of interface instabilities
in nonionic lamellar phases. Langmuir 16: 3718-3726.
Chen, X.,
Schriver, M., Suen, T. & Mao, S.S. 2007. Fabrication of 10 nm diameter TiO2 nanotube arrays by titanium
anodization. Thin Solid Films 515: 8511-8514.
Das, K.,
Panda, S.K. & Chaudhuri, S. 2008. Solvent-controlled synthesis of TiO2 1D nanostructures: Growth
mechanism and characterization. Journal of Crystal Growth 310:
3792-3799.
Deb, S.K.
2005. Dye-sensitized TiO2 thin-film
solar cell research at the National Renewable Energy Laboratory (NREL). Solar
Energy Materials and Solar Cells 88: 1-10.
Eswaramoorthi,
I. & Hwang, L.P. 2007. Anodic titanium oxide: A new template for the
synthesis of larger diameter multi-walled carbon nanotubes. Diamond and
Related Materials 16: 1571-1578.
Gratzel, M.
2003. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology
C: Photochemistry Reviews 4: 145-153.
Guo,
Y., Lee, N.H., Oh, H.J., Yoon, C.R., Park, K.S., Lee, W.H., Li, Y., Lee, H.G.,
Lee, K.S. & Kim, S.J. 2008. Preparation of titanate nanotube thin film
using hydrothermal method. Thin Solid Films 516: 8363-8371.
Hong, D.U., Han, C.H., Park, S.H., Kim, I.J., Gwak, J., Han,
S.D. & Kim, H.J. 2009. Recovery properties of hydrogen gas sensor with
Pd/titanate and Pt/titanate nanotubes photo-catalyst by UV radiation from
catalytic poisoning of H2S. Current Applied Physics 9: 172-178.
Huang, C., Liu, X.,
Kong, L., Zhou, H., Liu, Y., Qiu, J. & Wang, Y. 2006. Hydrothermal
synthesis of vanadium oxide nanotubes by a facile route. Rare Metals 25:
88-93.
Iijima, S. 1991.
Synthesis of carbon nanotubes. Nature 354: 56-58.
Jin, Z., Zhang, X., Li,
Y., Li, S. & Lu, G. 2007. 5.1% Apparent quantum efficiency for stable
hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catalysis
Communications 8: 1267-1273.
Kasuga, T., Hiramatsu,
M., Hoson, A., Sekino, T. & Niihara, K. 1998. Formation of titanium oxide
nanotube. Langmuir 14: 3160-3163.
Kasuga, T., Hiramatsu,
M., Hoson, A., Sekino, T. & Niihara, K. 1999. Titania nanotubes prepared by
chemical processing. Advanced Materials 11: 1307-1311.
Lavayen, V., Mirabal,
N., O’Dwyer, C., Santa Ana, M.A., Benavente, E., Sotomayor Torres, C.M. &
González, G. 2007. The formation of nanotubes and nanocoils of molybdenum
disulphide. Applied Surface Science 253: 5185-5190.
Lee, C.K., Lyu, M.D.,
Liu, S.S. & Chen, H.C. 2009. The synthetic parameters for the preparation
of nanotubular titanate with highly photocatalytic activity. Journal of the
Taiwan Institute of Chemical Engineers 40: 463-470.
Li, B., Wang, L.D.,
Kang, B.N., Wang, P. & Qiu, Y. 2006. Review of recent progress in
solid-state dye-sensitized solar cells. Solar Energy Materials and Solar
Cells 90: 549-573.
Mardare, D., Iftimie, N.
& Luca, D. 2007. TiO2 thin
films as sensing gas materials. 4th Functional and Nanostructured Materials
Conference. Elsevier Science Bv, Gdansk, POLAND, 4396.
Mor, G.K., Varghese,
O.K., Paulose, M., Shankar, K. & Grimes, C.A. 2006. A review on highly
ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material
properties, and solar energy applications. Solar Energy Materials and Solar
Cells 90: 2011-2075.
Nakahira, A., Kubo, T.
& Numako, C. 2010. Formation mechanism of TiO2-derived
titanate nanotubes prepared by the hydrothermal process. Inorganic Chemistry 49: 5845- 5852.
Pan, K., Zhang, Q.,
Wang, Q., Liu, Z., Wang, D., Li, J. & Bai, Y. 2007. The
photoelectrochemical properties of dye-sensitized solar cells made with TiO2 nanoribbons and nanorods. Thin
Solid Films 515: 4085-4091.
Pavasupree, S.,
Ngamsinlapasathian, S., Nakajima, M., Suzuki, Y. & Yoshikawa, S. 2006.
Synthesis, characterization, photocatalytic activity and dye-sensitized solar
cell performance of nanorods/nanoparticles TiO2 with mesoporous structure. Journal
of Photochemistry and Photobiology A: Chemistry 184: 163-169.
Peng, Y.P., Lo, S.L.,
Ou, H.H. & Lai, S.W. 2010. Microwave-assisted hydrothermal synthesis of
N-doped titanate nanotubes for visible-light-responsive photocatalysis. Journal
of Hazardous Materials 183: 754-758.
Qamar, M., Yoon, C.R.,
Oh, H.J., Lee, N.H., Park, K., Kim, D.H., Lee, K.S., Lee, W.J. & Kim, S.J.
2008. Preparation and photocatalytic activity of nanotubes obtained from
titanium dioxide. Catalysis Today 131: 3-14.
Seo, H.K., Kim, G.S.,
Ansari, S.G., Kim, Y.S., Shin, H.S., Shim, K.H. & Kyung, E. 2008. A study
on the structure/phase transformation of titanate nanotubes synthesized at
various hydrothermal temperatures. Solar Energy Materials and Solar Cells 92:
1553-1559.
Song, L., Zhang, S.,
Chen, B., Ge, J. & Jia, X. 2010. A hydrothermal method for preparation of
(alpha)-Fe2O3 nanotubes and their catalytic performance for thermal
decomposition of ammonium perchlorate. Colloids and Surfaces A:
Physicochemical and Engineering Aspect 360: 1-5.
Song, Z., Xu, H., Li,
K., Wang, H. & Yan, H. 2005. Hydrothermal synthesis and photocatalytic
properties of titanium acid H2Ti2O5.H2O nanosheets. Journal of
Molecular Catalysis A: Chemical 239: 87-91.
Sun, S., Zou, Z. &
Min, G. 2009. Synthesis of tungsten disulfide nanotubes from different
precursor. Materials Chemistry and Physics 114: 884-888.
Wang, B., Shi, Y. &
Xue, D. 2007. Large aspect ratio titanate nanowire prepared by monodispersed
titania submicron sphere via simple wet-chemical reactions. Journal of Solid
State Chemistry 180: 1028-1037.
Wu, X., Jiang, Q.Z., Ma,
Z.F. & Shangguan, W.F. 2007. Tile overlapping model for synthesizing TiO2 nanotubes by microwave
irradiation. Solid State Communications 143: 343-347.
Xiong, L., Sun, W.,
Yang, Y., Chen, C. & Ni, J. 2010. Heterogeneous photocatalysis of methylene
blue over titanate nanotubes: Effect of adsorption. Journal of Colloid
Interface Science 356: 211-216.
Yamashita, H., Nakao,
H., Takeuchi, M., Nakatani, Y. & Anpo, M. 2003. Coating of TiO2 photocatalysts on
super-hydrophobic porous teflon membrane by an ion assisted deposition method
and their self-cleaning performance. Nuclear Instruments and Methods in
Physics Research Section B: Beam Interactions with Materials and Atoms 206:
898-901.
*Corresponding
author; email: huangnayming@gmail.com
|