Sains Malaysiana
43(1)(2014): 151-159
Combined Similarity-numerical Solutions
of MHD Boundary Layer Slip Flow of
Non-Newtonian Power-law Nanofluids
over a Radiating Moving Plate
(Gabungan Penyelesaian Keserupaan Persamaan-berangka Aliran Slip
bagi Lapisan Sempadan MHD dengan
Nano Bendalir Hukum Kuasa yang Bukan-Newtonian atas Permukaan Beradiasi
yang Bergerak)
NUR
HUSNA MD. YUSOFF, MD. JASHIM UDDIN* & AHMAD IZANI MD. ISMAIL
School of Mathematical Sciences, Universiti Sains Malaysia, Penang
11800, Malaysia
Diserahkan: 24 Ogos 2012/Diterima: 26 Mac 2013
ABSTRACT
A combined similarity-numerical solution of the magnetohydrodynamic
boundary layer slip flow of an electrically conducting non-Newtonian
power-law nanofluid along a heated radiating moving vertical plate
is explored. Our nanofluid model incorporates the influences of
the thermophoresis and the Brownian motion. The basic transport
equations are made dimensionless first and then suitable similarity
transformations are applied to reduce them into a set of nonlinear
ordinary differential equations with the associated boundary conditions.
The reduced equations are then solved numerically. Graphical results
for the non-dimensional flow velocity, the temperature and the nanoparticles
volume fraction profiles as well as for the friction factor, the
local Nusselt and the Sherwood numbers are exhibited and examined
for various values of the controlling parameters to display the
interesting aspects of the solutions. It was found that the friction
factor increases with the increase of the magnetic field (M), whilst
it is decreased with the linear momentum slip parameter (a).
The linear momentum slip parameter (a) reduces the heat transfer
rates and the nanoparticles volume fraction rates. Our results are
compatible with the existing results for a special case.
Keywords: Magnetic field; momentum slip boundary condition;
non-Newtonian power–law nanofluids; radiation
ABSTRAK
Gabungan penyelesaian keserupaan-berangka aliran tergelincir
bagi lapisan sempadan magnetohidrodinamik nano bendalir hukum kuasa
yang bukan-Newtonian yang boleh mengalirkan elektrik atas permukaan
bergerak serta beradiasi diterokai. Model nanobendalir kami menggabungkan
pengaruh termoforesis dan gerakan Brownian. Persamaan pengangkutan
asas dijadikan tidak berdimensi dahulu dan transformasi persamaan
yang sesuai digunakan untuk mengurangkan ke satu set persamaan pembezaan
biasa tak linear dengan syarat sempadan yang berkaitan. Persamaan
yang dikurangkan kemudian diselesaikan secara berangka. Keputusan
grafik untuk halaju tidak berdimensi, suhu, profil pecahan isi padu
zarah-zarah nano, nombor Nusselt serta Sherwood dipamerkan dan dikaji
bagi pelbagai parameter kawalan untuk memaparkan aspek-aspek yang
menarik daripada penyelesaian. Kajian mendapati bahawa regangan
dinding ricih meningkatkan peningkatan medan magnet M, manakala
menurun dengan momentum lelurus slip parameter (a). Momentum
lelurus slip parameter a mengurangkan kadar pemindahan haba dan
pecahan isi padu zarah nano. Keputusan kami adalah selaras dengan
keputusan yang sedia ada bagi kes khas.
Kata kunci: Keadaan sempadan momentum slip; medan magnet; nanobendalir
yang bukan Newtonian; radiasi
RUJUKAN
Andersson, H.I. & Bech, K.H. 1992. Magnetohydrodynamic
flow of a power-law fluid over a stretching sheet. International
Journal Non-Linear Mechanics 27: 929-936.
Boutros, Y.Z., Abd-el-Malek, M.B., Badran, N.A. & Hassan, H.S.
2006. Lie-group method of solution for steady two-dimensional boundary-layer
stagnation-point flow towards a heated stretching sheet placed in
a porous medium. Meccanica 41: 681-691.
Buongiorno, J. 2006. Convective transport in nanofluids. ASME
Journal of Heat Transfer 128: 240-250.
Cheng, P. & Minkowycz, W.J. 1977. Free convection about a vertical
flat plate embedded in a porous medium with application to heat
transfer from a dike. J. Geophysics Research 82: 2040-2044.
Cortell, R. 2008. Radiation effects in the Blasius flow. Applied
Mathematics and Computations 198: 333-338.
Cortell, R. 2011. Suction, viscous dissipation and thermal radiation
effects on the flow and heat transfer of a power law fluid past
an infinite porous plate. Chemical Engineering Research and
Design 89: 85-93.
Crane, L.J. 1970. Flow past a stretching plate. Journal of Applied
Mathematics and Physics 21: 645-647.
Elhajjar, B., Bachir, G., Mojtabi, A., Fakih, C. & Charrier-Mojtabi
M.C. 2010. Modeling of Rayleigh-Benard natural convection heat transfer
in nanofluid. Comptes Rendus Mecaniquue 338: 350-354.
Ellahi, R. 2009. Effects of the slip boundary condition on non-
Newtonian flows in a channel. Communications in Nonlinear Sciences
and Numerical Simulations 14: 1377-1384.
Ellahi, R., Raza, M. & Vafai, K. 2012. Series solutions of non-Newtonian
nanofluids with Reynolds’ model and Vogels’ model by
means of the Homotopy analysis method. Mathematical and Computer
Modelling 55: 1876-1891.
Guo, S.Z., Jiang, Y.L.J. & Xie, H.Q. 2010, Nanofluids Containing
?-Fe2O3 nanoparticles and their heat transfer enhancements. Nanoscale
Research Letters 5: 1222-1227.
Hady, F.M., Ibrahim, F.S., Abdel-Gaied, S.M. & Eid, M.R. 2012.
Radiation effect on viscous flow of a nanofluid and heat transfer
over a nonlinearly stretching sheet. Nanoscale Research Letters
7: 229.
Hak, G.M. 2002. Flow Physics in the MEMS Handbook. Boca
Raton, FL: CRC Press.
Lioubashevski, O., Katz, E. & Willner, I. 2004. Magnetic force
effects on electrochemical processes: A theoretical hydrodynamic
model. Journal of Physical Chemistry B 108: 5778-5784.
Mahapatra, T.R., Dholey, S. & Gupta, A.S. 2007. Momentum and
heat transfer in the magnetohydrodynamic stagnation point flow of
a viscoelastic fluid toward a stretching surface. Meccanica
42: 263-272.
Mahmoud, M.A.A. 2011. Slip velocity effect on a non-Newtonian power
law fluid over a moving permeable surface with heat generation.
Mathematical and Computer Modelling 54: 1228-1237.
Makinde, O.D. & Aziz, A. 2011. Boundary layer flow of a nanofluid
past a stretching sheet with a convective boundary condition. International
Journal of Thermal Sciences 50: 1326-1332.
Nadeem, S. & Lee, C. 2012. Boundary layer flow of nanofluid
over an exponentially stretching surface. Nanoscale Research
Letters 7: 94.
Nield, D.A. & Kuznetsov, A.V. 2011. The Cheng-Minkowycz problem
for the double diffusive natural convective boundary-layer flow
in a porous medium saturated by a nanofluid. International Journal
of Heat Mass Transfer 54: 374-378.
Noghrehabadi, A., Pourrajab, R. & Ghalambaz, M. 2012. Effect
of partial slip boundary condition on the flow and heat transfer
of nanofluids past stretching sheet prescribed constant wall temperature.
International Journal of Thermal Sciences 54: 253-261.
Piazza, R. & Parola, A. 2008. Thermophoresis in colloidal suspensions.
Journal of Physics: Condensed Matter 20: 153102.
Prasad, K.V., Vajravelu, K. & Datti, P.S. 2010. Mixed convection
heat transfer over an on-linear stretching surface with variable
fluid properties. International Journal of Non-Linear Mechanics
45: 320-330.
Prasad, R.V., Vasu, B., Bég, O.A. & Parshad, R.D. 2012.
Thermal radiation effects on magnetohydrodynamic free convection
heat and mass transfer from a sphere in a variable porosity regime.
Communications in Nonlinear Science and Numerical Simulation
17: 654-671.
Putra, N., Roetzel, W. & Das, S.K. 2003. Natural convection
of nanofluids. Heat Mass Transfer 39: 775-784.
Raptis, A., Perdikis, C. & Takhar, H.S. 2004. Effect of thermal
radiation on MHD flow. Applied Mathematics and Computations
153: 645-649.
Rosenbaum, E.E. & Hatzikiriakos, S.G. 1997. Wall slip in the
capillary flow of molten polymers subject to viscous heating. AIChemE
Journal 43: 598–608.
Roux, C.L. 2009. On flows of third-grade fluids with non-linear
slip boundary conditions. International Journal of Non- Linear
Mechanics 44: 31-41.
Sakiadis, B.C. 1961. Boundary layer behaviour on continuous solid
surfaces: I. Boundary layer equations for two-dimensional and axis
symmetric flow. American Institute Chemical Engineers Journal
7: 26-28.
Uddin, M.J., Pop, I. & Ismail, A.I.M. 2012. Free convection
boundary layer flow of a nanofluid from a convectively heated vertical
plate with linear momentum slip boundary condition. Sains Malaysiana
41(11): 1475-1482.
Uddin, M.J., Khan, W.A. & Ismail, A.I.M. 2012. MHD free convective
boundary layer flow of a nanofluid past a flat vertical plate with
Newtonian heating boundary condition. PLoS One 7(11): e49499.
Xue, H. & Liao, S.J. 2009. Laminar flow and heat transfer in
the boundary-layer of non-Newtonian fluids over a stretching flat
sheet. Computers and Mathematics with Applications 57:
1425-1431.
Yu, W. & Xie, H. 2012. A review on nanofluid: Preparation, stability
mechanisms, and applications. Journal of Nanomaterials
Articles ID 435873.
*Pengarang untuk surat-menyurat; email: jashim_74@yahoo.com
|