Sains Malaysiana 43(1)(2014): 73–80

 

Optimization of Submerged Culture Conditions for the Production of Mycelial

Biomass and Exopolysaccharides from Lignosus rhinocerus

(Pengoptimuman Kultur Tenggelam untuk Penghasilan Biojisim Miselium dan Eksopolisakarida Lignosus rhinocerus)

 

WEI HONG LAI1*, SAADIAH MOHD SALLEH2, FAUZI DAUD2, ZAMRI ZAINAL2,

ABAS MAZNI OTHMAN3& NORIHAN MOHD SALEH1

1Agro-Biotechnology Institute, Ministry of Science, Technology and Innovation

c/o Malaysian Agricultural Research and Development Institute, 43400 Serdang, Selangor, Malaysia

 

2School of Biosciences & Biotechnology, Faculty of Science & Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

3Strategic Livestock Research Centre, Malaysian Agricultural Research and Development Institute

43400 Serdang, Selangor, Malaysia

 

Diserahkan: 19 September 2012/Diterima: 19 April 2013

 

ABSTRACT

Tiger's Milk mushroom (Lignosus rhinocerus) is a highly priced medicinal mushroom utilized in traditional medicine to treat various diseases. However, due to insufficient wild L. rhinocerus, submerged culture conditions and nutritional requirements for the production of mycelial biomass and exopolysaccharide (EPS) from L. rhinocerus were studied using one-factor-at-a-time and orthogonal matrix method in shake flask culture. The optimal pH and temperature for ideal production of mycelial biomass and EPS were found to be at pH6 and 25°C, respectively. The optimal compositions for mycelial biomass production were 80 g/L of glucose, 4 g/L of potassium nitrate, 0.4 g/L of FeSO4.7H2O and 0.1 g/L of CaCI2. Subsequently, the optimal compositions for EPS production were 80 g/L of glucose, 4 g/L of potassium nitrate, 1.4 g/L of FeSO4.7H2O and 1.1 g/L of CaCI2. The maximum mycelial biomass and EPS concentrations achieved in a 1.5 L stirred-tank bioreactor were 6.3788 g/L and 1.2 g/L, respectively. Mycelial biomass production was about 3 times higher than that at the basal medium. However, EPS production indicated no significant difference at the basal medium. In addition, the concentrations for α-amylase, β-amylase, cellulase and invertase in optimal medium were 2.87, 1.07, 3.0 and 3.0 mg/mL, respectively. Current findings suggest that the production of mycelial biomass and EPS of L. rhinocerus can be enhanced dramatically by controlling the culture conditions and modifying the medium's composition.

 

Keywords: Exopolysaccharides; Lignosus rhinoceros; mycelial biomass; orthogonal matrix method; submerged culture

 

ABSTRAK

Cendawan Susu Harimau (Lignosus rhinocerus) adalah cendawan bernilai yang sering digunakan dalam perubatan tradisi untuk merawat pelbagai penyakit. Namun, disebabkan kekurangan bekalan L. rhinocerus liar, maka kajian penghasilan biojisim miselium dan eksopolisakarida (EPS) daripada cendawan ini dijalankan menggunakan kaedah matriks ortogon satu faktor pada satu masa untuk memperoleh keadaan pengkulturan tenggelam yang optimum. Nilai pH dan suhu optimum untuk penghasilan biojisim miselium dan EPS dalam medium lengkap cendawan (MLC) didapati adalah pada pH6 dan 25°C. Komposisi optimum untuk penghasilan biojisim miselium ialah 80 g/L glukosa, 4 g/L kalium nitrat, 0.4 g/L FeSO4.7H2O dan 0.1 g/L CaCI2. Manakala, komposisi optimum untuk penghasilan EPS ialah 80 g/L glukosa, 4 g/L kalium nitrat, 1.4 g/L FeSO4.7H2O dan 1.1 g/L CaCI2. Penghasilan biojisim miselium dan EPS telah dipertingkatkan dengan menggunakan 1.5 L tangki bioreaktor dan penghasilan biojisim miselium dan EPS yang maksimum ialah 6.3788 g/L dan 1.2 g/L. Di samping itu, kepekatan α-amilase, β-amilase, selulase dan invertase dalam medium yang optimum masing-masing adalah 2.87, 1.07, 3.0 dan 3.0 mg/mL. Penemuan semasa mencadangkan bahawa penghasilan biojisim miselium dan EPS L. rhinocerus boleh dipertingkatkan secara mendadak melalui pengawalan keadaan pengkulturan dan komposisi medium.

 

Kata kunci: Biojisim miselium; eksopolisakarida; kaedah matriks ortogon; kultur tenggelam; Lignosus rhinoceros

RUJUKAN

Adeniran, H.A., Abiose, S.H. & Ogunsua, A.O. 2010. Production of fungal β-amylase and Amyloglucosidase on some Nigerian agricultural residues. Food Bioprocess Technol. 3: 693-698.

Bae, J.T., Sinha, J., Park, J.P., Song, C.H. & Yun, J.W. 2000. Optimization of submerged culture conditions for exo-polymer production by Paecilomyces japonica. J. Microbiol. Biotech. 10: 482-487.

Boddy, L. 1983. Effect of temperature and water potential on growth rate of wood-rotting basidiomycetes. Trans. Br. Mycol. Soc. 80: 141-149.

Burns, P.J., Yeo, P., Keshavarz, T., Roller, S. & Evans, C.S. 1994. Physiological studies of exopolysaccharide production from the basidiomycete Pleurotus florida. Enzyme Microbiol. Technol. 16: 566-572.

Cartwright, K.S.G. & Findlay, W.P.K. 1934. Studies in the physiology of wood-destroying fungi. Ann. Bot. 48: 481-495.

Chardonnet, C.O., Sams, C.E. & Conway, W.S. 1999. Calcium effect on the mycelial cell walls of Botrytis cinerea. Phytochemistry 52: 967-973.

Chiu, Y.W., Zeng, C.L., Chian, P.L. & Shiu, H.W. 2008. Effect of carbon and nitrogen sources on the production and carbohydrate composition of exopolysaccharides by submerged culture of Pleurotus citrinopileatus. J. Food Drug Anal. 16(2): 61-67.

Cochrane, V.W. 1958. Physiology of Fungi. New York: John Wiley.

Cooke, R.C. & Whipps, J.M. 1993. Ecophysiology of Fungi. Oxford, U.K.: Blackwell Scientific.

Coral, G., Arikan, B., Onaldi, M.N. & Govenmez, H. 2002. Some properties of crude carboxymethyl cellulase of Aspergillus niger Z10 wild-type strain. Turk. J. Biol. 26: 209-213.

Cui, B.K., Tang, L.P. & Dai, Y.C. 2010. Morphological and molecular evidences for a new species of Lignosus (Polyporales, Basidiomycota) from tropical China. Mycol. Prog. 1-5.

Dong, C.H. & Yao, Y.J. 2005. Nutritional requirements of mycelial growth of Cordyceps sinensis in submerged culture. J. Appl. Microbiol. 99: 483-492.

Douanla-Meli, C. & Langer, E. 2003. A new species of Lignosus (Polyporaceae) from Cameroon. Mycotaxon 86: 389-394.

Edwards, V., Goktepe, I., Milford, B., Isikhuemhen, O.S., Yu, J. & Ahmedna, M. 2005. Inhibitory activity of tiger milk mushroom on cancer cells. IFT annual meeting. New Orleans, Lousiana.

Elisashvili, V.I., Kachlishvili, E.T. & Wasser, S.P. 2009. Carbon and nitrogen source effects on basidiomycetes exopolysaccharide production. Appl. Biochem. Microbiol. 45(5): 531-535.

Escamilla, S.E.M., Dendooven, L., Magana, I.P., Parra, S.R. & Torre, M.D. 2000. Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactor. J. Biotechnol. 76: 147-155.

Guo, X., Zou, X. & Min, S. 2009. Optimization of a chemically-defined medium for mycelial growth and polysaccharide production by medicinal mushroom Phellinus igniarius. World J. Microbiol. Biotechnol. 25: 2187-2193.

Hwang, H.J., Kim, S.W., Xu, C.P., Choi, J.W. & Yun, J.W. 2003. Production and molecular characteristics of four groups of exopolysaccharides from submerged culture of Phellinus gilvus. J. Appl. Microbiol. 94: 708-719.

Jonathan, S.G. & Fasidi, I.O. 2001. Effect of carbon, nitrogen and mineral sources on growth of Psathyrella atroumbonata (Pegler), a Nigerian edible mushroom. Food Chem. 72: 479-483.

Kammoun, R., Naili, B. & Bejar, S. 2008. Application of a statistical design to the optimization of parameters and culture medium for α-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product). Biores. Tech. 99: 5602-5609.

Kim, H.O., Lim, J.M., Joo, J.H., Kim, S.W., Hwang, H.J., Choi, J.W. & Yun, J.W. 2005. Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresource Technology 96: 1175-1182.

Lai, W.H., Siti Murni, M.J., Fauzi, D., Abas Mazni, O. & Norihan, M.S. 2011. Optimal culture conditions for mycelia growth of Lignosus rhinocerus. Mycobiology 39(2): 92-95.

Lee, M.T., Chen, W.C. & Chou, C.C. 1997. Medium improvement by orthogonal array designs for cholesterol oxidase production by Rhodococcus equi No. 23. Process Biochem. 32: 697-703.

Lee, S.S., Chang, Y.S. & Noraswati, N.M. 2009. Utilization of macrofungi by some indigenous communities for food and medicine in Peninsular Malaysia. For. Ecol. Manag. 257: 2062-2065.

Li, Y., Chen, J., Lun, S.Y. & Rui, X.S. 2001. Efficient pyruvate production by a multi-vitamin auxotroph of Torulopsis glabrata: Key role and optimization of vitamin levels. Appl. Microbiol. Biotechnol. 55: 680-685.

Lv, Y.L., Sun, L.H., Zhang, F.S., Zhoa, Y. & Guo, S.X. 2010. The effect of cultivation conditions on the mycelia growth of a dark-septate endophytic isolate. African Journal of Microbiology Research 4: 602-607.

Manzoni, M. & Rollini, M. 2001. Isolation and characterization of the exopolysaccharide produced by Daedalea quercina. Biotech. Lett. 23: 1491-1497.

Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428.

Montgomery, D.C. 1999. Design and Analysis of Experiment. 4th ed. NewYork: Wiley.

Núñez, M. & Ryvarden, L. 2001. East Asian polypores 2. Polyporaceae s. lato. Synop. Fungorum 14: 170-522.

Paula, M.S. & Pérola, O.M. 2010. Application of microbial α-amylase in industry. Brazilian Journal of Microbiology 41: 850-861.

Qing, H.F. & Jian, J.Z. 2002. Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochem. 37: 769-774.

Ryvarden, L. & Johansen, I. 1980. A Preliminary Polypore Flora of East Africa. Oslo: Fungi flora.

Shih, I.L., Pan, K. & Hsieh, C. 2006. Influence of nutritional components and oxygen supply on the mycelial growth and bioactive metabolites production in submerged culture of Antrodia cinnamomea. Process Biochem. 41: 1129-1135.

Wei, C.H., Zhou, Z., Shi, F.C. & Yong, Q.L. 2008. Optimization for the production of exopolysaccharides from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresour. Technol. 99: 3187-3194.

Xu, C.P., Kim, S.W., Hwang, H.J., Choi, H.J. & Yun, J.W. 2003. Optimization of submerged culture conditions for mycelial growth and exo-biopolymer production by Paecilomyces tenuipes C240. Process Biochem. 38: 1025-1030.

Yang, F.C., Huang, H.C. & Yang, M.J. 2003. The influence of environmental conditions on the mycelial growth of Antrodia cinnamomea in submerged cultures. Enzyme Microb. Technol. 33: 395-402.

Yang, F.C. & Liau, C.B. 1998. Effects of cultivating conditions on the mycelial growth of Ganoderma lucidum in submerged flask cultures. Bioprocess Eng. 19: 233-236.

 

 

*Corresponding author; email: weihan_1980@yahoo.com

 

 

sebelumnya