Sains Malaysiana 43(3)(2014): 459–465
A
Hybrid Enzymatic Zinc-Air Fuel Cell
(Sel Bahan Api Hibrid Berenzim Zink-Udara)
ABDUL AZIZ AHMAD, RAIHAN OTHMAN*, FARIDAH YUSOF
& MOHD FIRDAUS
ABD WAHAB
Faculty of Engineering, International Islamic University Malaysia
P.O. Box 10, 50728 Kuala Lumpur, Malaysia
Diserahkan: 30 Oktober 2012/Diterima: 13 Jun 2013
ABSTRACT
A hybrid biofuel cell, a zinc-air cell employing laccase as the oxygen
reduction catalyst is investigated. A simple cell design is employed;
a membraneless single chamber and a freely suspended laccase in
the buffer electrolyte. The cell is characterised based on its open-circuit
voltage, power density profile and galvanostatic discharge at 0.5
mA. The activity of laccase as an oxidoreductase is substantiated
from the cell discharge profiles. The use of air electrode in the
cell design enhanced the energy output by 14%. The zinc-air biofuel
cell registered an open-circuit voltage of 1.2 V and is capable
to deliver a maximum power density of 1.1 mWcm-2
at 0.4 V. Despite its simple design features, the
power output is comparable to that of biocatalytic cell utilising
a much more complex system design.
Keywords: Biocatalyst; bioelectrochemical cell; enzymatic zinc-air
cell; hybrid biofuel cell; laccase; metal biofuel cell
ABSTRAK
Sel bio-bahan api hibrid, sel zink-udara menggunakan lakase
sebagai pemangkin bagi penguraian oksigen dikaji. Reka bentuk sel yang mudah
diguna pakai: Ruangan tunggal tanpa membran dan lakase yang diampaikan secara
bebas di dalam elektrolit pemampan. Pencirian sel adalah berdasarkan voltan
litar terbuka, profil ketumpatan kuasa dan discas pada arus malar 0.5 mA.
Aktiviti lakase sebagai enzim penguraian oksigen dibuktikan daripada profil
discas sel. Penggunaan elektrod udara di dalam reka bentuk sel berhasil
menambahkan keluaran tenaga sebanyak 14%. Sel bio-bahan api zink-udara
memberikan voltan litar terbuka 1.2 V dan berupaya menghasilkan ketumpatan
kuasa maksimum 1.1 mWcm-2 pada
0.4 V. Di sebalik ciri reka bentuk sel yang mudah, keluaran kuasa yang
dihasilkan adalah sebanding dengan sel bio-pemangkin yang menggunapakai reka
bentuk sistem yang jauh lebih rumit.
Kata kunci: Bio-pemangkin;
lakase; sel bio-bahan api hibrid; sel bio-bahan api logam; sel bioelektrokimia;
sel zink-udara berenzim
RUJUKAN
Alcalde, M. 2007. Laccases: Biological
functions, molecular structure and industrial applications. In Industrial
Enzymes: Structure, Function and Applications, edited by Polaina, J. &
MacCabe, A.P. Heidelberg: Springer.
Atanassov, P., Apblett, C., Banta, S., Brozik,
S., Barton, S., Cooney, M., Liaw, B.Y., Mukerjee, S. & Minteer, S.D. 2007.
Enzymatic biofuel cells. Electrochem. Soc. Interface 16: 28-31.
Bullen, R.A., Arnot, T.C., Lakeman, J.B. &
Walsh, F.C. 2006. Biofuel cells and their development. Biosens. Bioelectron. 21: 2015-2045.
Bond, D.R. & Lovley, D.R. 2005. Evidence for
involvement of an electron shuttle in electricity generation by geothrix
fermentans. Appl. Environ. Microbiol. 71: 2186-2189.
Chakkaravarthy, C., Abdul Waheed, A.K. &
Udupa, H.V.K. 1981. Zinc-air alkaline batteries – A review. J. Power
Sources 6: 203-306.
Flexer, V., Brun, N., Backov, R. & Mano, N.
2010. Designing highly efficient enzyme-based carbonaceous foams electrodes for
biofuel cells. Energy Environ. Sci. 3: 1302-1306.
Habrioux, A., Merle, G., Servat, K., Kokoh, K.B.,
Innocent, C., Cretin, M. & Tingry, S. 2008. Concentric glucose/O2
biofuel cell. J. Electroanal. Chem. 622: 97-102.
Jindra, J., Mrha, J. & Musilová, M.
1973. Zinc-air cell with neutral electrolyte. J. Appl. Electrochem.
3: 297-301.
Kozawa, A., Zilionis, V.E. & Brodd, R.J. 1970a.
Oxygen and hydrogen peroxide reduction at a ferric phthalocycnine-catalyzed
graphite electrode. J. Electrochem. Soc. 117: 1470-1474.
Kozawa, A., Zilionis, V.E. & Brodd, R.J. 1970b.
Electrode materials and catalysts for oxygen reduction in isotonic
saline solution. J. Electrochem. Soc. 117: 1474-1478.
Liu, H., Ramnarayanan, R. & Logan, B.E. 2004.
Production of electricity during wastewater treatment using a single
chamber microbial fuel cell. Environ. Sci. Technol. 38:
2281-2285.
Mano, N., Mao, F., Shin, W., Chen, T. & Heller,
A. 2003. A miniature biofuel cell operating at 0.78 V. Chem.
Commun. 21: 518-519.
Mano, N., Kim, H.H., Zhang, Y.C. & Heller,
A. 2002. An oxygen cathode operating in physiological solution.
J. Am. Chem. Soc. 124: 6480-6486.
Martinez-Ortiz, J., Flores, R. & Vazquez-Duhalt,
R. 2011. Molecular design of laccase cathode for direct electron
transfer in a biofuel cell. Biosens. Bioelectron. 26: 2626-2631.
Minteer, S.D., Liaw, B.Y. & Cooney, M.J. 2007.
Enzyme-based biofuel cells. Curr. Opin. Biotech. 18: 228-234.
Moon, H., Chang, I.S. & Kim, B.H. 2006. Continuous
electricity production from artificial wastewater using a mediator-less
microbial fuel cell. Bioresource Technol. 97: 621-627.
Murata, K., Kajiya, K., Nakamura, N. & Ohno,
H.2009. Direct electrochemistry of bilirubin oxidase on three-dimensional
gold nanoparticle electrodes and its application in a biofuel cell.
Energy Environ. Sci. 2: 1280-1285.
Othman, R., Basirun, W.J., Yahaya, A.H. &
Arof, A.K. 2001. Hydroponics gel as a new electrolyte gelling agent
for alkaline zinc-air cells. J. Power Sources 103: 34-41.
Palmore, G.T.R. & Whitesides, G.M. 1994. Microbial
and enzymatic biofuel cells. In Enzymatic Conversion of Biomass
for Fuels Production, edited by Himmel, M.E., Baker, J.O. &
Overend, R.P. ACS Symposium Series (American Chemical Society) 566:
271-290.
Ramlen, R.P. 1995. Metal/air batteries. In Handbook
of Batteries, edited by David Linden, 2nd ed. New York: McGraw-Hill.
Ride, J.P. 1980. The effect of induced lignification
on the resistance of wheat cell walls to fungal degradation. Physiol.
Plant Pathol. 16: 187-196.
Sakai, H., Nakagawa, T., Tokita, Y., Hatazawa,
T., Ikeda, T., Tsujimura, S. & Kano, K. 2009. A high-power glucose/
oxygen biofuel cell operating under quiescent conditions. Energy
Environ. Sci. 2: 133-138.
Smolander, M., Boer, H., Valkiainen, M., Roozeman,
R., Bergelin, M., Eriksson, J.E., Zhang, X.C., Koivula, A. &
Viikari, L. 2008. Development of a printable laccase-based biocathode
for fuel cell applications. Enzyme. Microb. Tech. 43: 93-102.
Tan, Y., Deng, W., Ge, B., Xie, Q., Huang, J.
& Yao, S.2009. Biofuel cell and phenolic biosensor based on
acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled
carbon nanotubes nanocomposites film. Biosens. Bioelectron.
24: 2225-2231.
Thurston, C.F. 1994. The structure and function
of fungal laccases. Microbiology 140: 19-26.
Yaropolov, A.I., Skorobogat’ko, O.V., Vartanov,
S.S. & Varfolomeyev, S.D. 1994. Laccase. Appl. Biochem.
Biotechnol. 49: 257-280.
Yoshida, H. 1883. Chemistry of lacquer (Urushi)
(Part 1). J. Chem. Soc. 43: 472-486.
*Pengarang untuk surat-menyurat; email: raihan@iium.edu.my
|