Sains Malaysiana 43(3)(2014):
491–496
Flow
and Heat Transfer of a Power-Law Fluid over a Permeable Shrinking Sheet
(Aliran dan Pemindahan Haba bagi Bendalir Hukum-Kuasa di Atas
Lembaran Telap yang Mengecut)
NOR AZIZAH YACOB1& ANUAR
ISHAK2*
1Faculty of Computer and Mathematical Sciences, Universiti Teknologi
MARA
Pahang
26400 Bandar Tun Razak Jengka, Pahang, Malaysia
2School of Mathematical Sciences, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Diserahkan: 24 Ogos 2012/Diterima: 8 Jun 2013
ABSTRACT
The steady, two-dimensional laminar flow of a power-law fluid over
a permeable shrinking sheet of constant surface temperature is investigated.
The governing partial differential equations were transformed into a system of
nonlinear ordinary differential equations using a similarity transformation,
before being solved numerically by the Runge-Kutta-Fehlberg method with
shooting technique. The results are presented graphically and the effects of
the power-law index n, suction parameter fw and Prandtl number Pr
were discussed. It was found that stronger suction is necessary for the
solution to exist for a pseudoplastic fluid (n<1) compared to a dilatant fluid (n>1).
Keywords: Boundary layer; heat transfer; power-law fluid;
shrinking sheet
ABSTRAK
Aliran lamina mantap dua matra bendalir
hukum-kuasa di atas lembaran telap dengan suhu permukaan malar yang mengecut
dikaji. Persamaan
pembezaan separa dijelmakan menjadi satu sistem persamaan pembezaan biasa tak
linear menggunakan penjelmaan keserupaan, sebelum diselesaikan secara berangka
menggunakan kaedah Runge-Kutta-Fehlberg dengan teknik tembakan. Keputusan dibentangkan secara grafik dan kesan indeks hukum-kuasa
n, parameter sedutan fw dan nombor Prandtl Pr dibincangkan. Didapati bahawa sedutan yang kuat adalah perlu supaya penyelesaian
wujud bagi bendalir pseudoplastik (n<1)
berbanding dengan bendalir dilatan (n>1).
Kata kunci: Bendalir hukum-kuasa; lapisan
sempadan; lembaran mengecut; pemindahan haba
RUJUKAN
Acrivos, A. Shah, M.J. & Petersen, E.E.
1960. Momentum and heat transfer in laminar boundary-layer flows of non-
Newtonian fluids past external surfaces. AIChE Journal 6: 312-317.
Andersson, H.I. &
Irgens, F. 1990. Film
flow of power-law fluids. In Encyclopedia of Fluid Mechanics,
edited by Cheremisinoff, N.P. Houston: Gulf Publishing. pp.617-648.
Arifin, N.M., Nazar, R. & Pop, I. 2010. Viscous flow due to a permeable stretching/shrinking sheet in a
nanofluid. Sains Malaysiana 40: 1359-1367.
Bachok, N., Ishak, A. &
Pop, I. 2010. Unsteady three-dimensional
boundary layer flow due to a permeable shrinking sheet. Applied Mathematics
and Mechanics - English Edition 31: 1421-1428.
Bailey, P.B., Shampine,
L.F. & Waltman, P.E. 1968. Nonlinear Two Point Boundary Value Problems. New York: Academic Press.
Bhattacharyya, K. & Layek, G.C. 2011.
Effects of suction/ blowing on steady boundary layer stagnation-point flow and
heat transfer towards a shrinking sheet with thermal radiation. International
Journal of Heat and Mass Transfer 54: 302-307.
Bhattacharyya, K., Mukhopadhyay, S. & Layek, G.C. 2011.
Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet. International
Journal of Heat and Mass Transfer 54: 308-313.
Chen, C.H. 2008. Effects of magnetic field and suction/injection
on convection heat transfer of non-Newtonian power-law fluids past a power-law
stretched sheet with surface heat flux. International Journal of Thermal
Sciences 47: 954-961.
Cheng, P-J. & Liu, K-C. 2009. Hydromagnetic instability
of a power-law liquid film flowing down a vertical cylinder using numerical
approximation approach techniques. Applied Mathematical
Modelling 33: 1904-1914.
Cortell, R. 2005. A note on
magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Applied
Mathematics and Computation 168: 557-566.
Fang, T. 2008. Boundary layer flow over
a shrinking sheet with power-law velocity. International
Journal of Heat and Mass Transfer 51: 5838-5843.
Fang, T. & Zhang, J. 2010. Thermal boundary layers over
a shrinking sheet: An analytical solution. Acta
Mechanica 209: 325-343.
Fang, T. & Zhang, J. 2009. Closed-form exact solutions
of MHD viscous flow over a shrinking sheet. Communications in
Nonlinear Science and Numerical Simulation 14: 2853-2857.
Fang, T., Yao, S., Zhang, J. & Aziz, A. 2010.
Viscous flow over a shrinking sheet with a second order slip flow
model. Communications in Nonlinear Science and Numerical
Simulation 15: 1831-1842
Fang, T., Liang, W. & Lee, C.F.F.
2008. A new solution branch
for the Blasius equation - A shrinking
sheet problem. Computer & Mathematics with Applications
56: 3088-3095. .
Hassanien, I.A. 1996. Flow and heat transfer on a continuous
flat surface moving in a parallel free stream of power-law fluid. Applied Mathematical Modelling 20: 779-784.
Hayat, T., Abbas, Z. & Sajid, M.
2007. On the analytic
solution of magnetohydrodynamic flow of a second grade fluid over a shrinking
sheet. Journal of Applied Mechanics 74: 1165-1171.
Howell, T.G., Jeng, D.R. & De Witt, K.J. 1997. Momentum
and heat transfer on a continuous moving surface in a power law fluid. International
Journal of Heat and Mass Transfer 40: 1853-1861.
Ishak, A., Lok, Y.Y. & Pop, I.
2010. Stagnation-point
flow over a shrinking sheet in a micropolar fluid. Chemical
Engineering Communications 197: 1417-1427.
Mahapatra, T.R., Nandy, S.K. & Gupta, A.S. 2009. Analytical solution of magnetohydrodynamic stagnation-point flow of
a power-law fluid towards a stretching surface. Applied Mathematics
and Computation 215: 1696-1710.
Miklavčič, M. & Wang, C.Y. 2006. Viscous flow due to a shrinking sheet. Quarterly of
Applied Mathematics 64: 283-290.
Postelnicu, A. & Pop, I. 2011. Falkner-Skan
boundary layer flow of a power-law fluid past a stretching wedge. Applied
Mathematics and Computation 217: 4359-4368.
Prasad, K.V., Datti, P.S. & Vajravelu, K. 2010.
Hydromagnetic flow and heat transfer of a non-Newtonian power law fluid over a
vertical stretching sheet. International Journal of Heat and Mass Transfer 53:
879-888.
Schowalter, W.R. 1960. The application of boundary-layer
theory to power-law pseudoplastic fluids: Similar solutions. AIChE Journal 6:
24-28.
Wang, T.Y. 1994. Similarity solution of laminar mixed
convection heat transfer from a horizontal plate to power-law fluid. Mingchi
Institute of Technology Journal 26: 25-32.
Wilkinson, W.L. 1960. Non-Newtonian Fluids. London:
Pergamon Press.
Xu, H. & Liao, S.J. 2009. Laminar flow and heat transfer
in the boundary-layer of non-Newtonian fluids over a stretching flat sheet. Computer
& Mathematics with Applications 57: 1425-1431.
Yao, S., Fang, T. & Zhong, Y. 2011. Heat transfer of a generalized stretching/shrinking wall
problem with convective boundary conditions. Communications in Nonlinear
Science and Numerical Simulation 16: 752-760.
Zheng, L., Ting, L. & Zhang, X. 2008. Boundary
layer flow on a moving surface in otherwise quiescent pseudo-plastic non-
Newtonian fluids. Metallurgy 15: 241-244.
*Pengarang
untuk surat-menyurat; email: anuar_mi@ukm.my
|