Sains Malaysiana 43(5)(2014):
757–766
Sr/Ca, Mg/Ca and Ba/Ca Ratios in the Otolith of Sea Bass in
Peninsular Malaysia as
Salinity Influence Markers
(Nisbah Sr/Ca, Mg/Ca dan Ba/Ca dalam Otolit Ikan Siakap di
Semenanjung Malaysia sebagai Penunjuk Pengaruh Saliniti)
AFIZA SURIANI SARIMIN & CHE ABD RAHIM MOHAMED*
School of Environmental and Natural Resource Sciences, Faculty
of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Diserahkan: 20 Januari 2012/Diterima: 23 Ogos 2013
ABSTRACT
The otoliths of sea bass (Lates calcarifer) were sampled from 23 locations in Peninsular
Malaysia in order to analyse the Sr/Ca, Mg/Ca and Ba/Ca ratios. This study
found that these elements/Ca ratios in sea bass otoliths correlated with the
salinity zone (thalassic series) compared with elements/Ca ratios in ambient
water. The contradictory pattern of Sr/Ca ratios and Ba/Ca ratios in otoliths
were found according to salinity zone variations. Thus, oligohaline waters
showed highest Ba/Ca ratios while the highest Sr/Ca ratios were recorded for
saline waters. The terrigenous enrichment of Ba in water also affects the Ba
content in otoliths. The presence of Mg in otoliths acts as a rival to Ba, thus
affecting Mg and Ba deposition. Meanwhile, Ba is the tracer for salinity
fluctuations based on the partition coefficient (D) and shows significant
changes. However, the elements in otoliths were found to originate indirectly
from the water column. The sequence of the elements/Ca ratios in otoliths and
ambient water were as follows, Sr/Ca>Mg/Ca>Ba/Ca and
Sr/Ca>Ba/Ca>Mg/Ca, respectively.
Keywords: Ba/Ca; Mg/Ca; Otolith; Sr/Ca;
thalassic series
ABSTRAK
Sebanyak 23 lokasi di Semenanjung Malaysia telah
dipilih untuk persampelan ikan siakap (Lates calcarifer). Otolit ikan siakap dianalisis untuk mendapatkan nisbah Sr/Ca,
Mg/Ca dan Ba/Ca. Kajian ini mendapati nisbah elemen/Ca dalam otolit mempunyai
korelasi dengan saliniti berbanding nisbah elemen/Ca dalam air ambien. Nisbah Sr/Ca dalam otolit didapati bertentangan dengan nisbah Ba/Ca
dalam otolit dan berubah mengikut saliniti. Oleh itu, nisbah Ba/Ca dalam
otolit adalah tinggi dalam air oligohalin manakala nisbah Sr/Ca dalam otolit
adalah tinggi dalam air masin. Pengkayaan unsur Ba dalam air
ambien mempengaruhi kandungan Ba dalam otolit. Manakala,
kehadiran Mg dalam otolit adalah pesaing kepada Ba lalu mempengaruhi pengenapan
Ba pada otolit. Unsur Ba merupakan penyurih
berdasarkan pekali sekatan (D) menunjukkan perubahan yang signifikan. Walau bagaimanapun, sumber elemen dalam otolit adalah daripada pengaruh air
ambien. Turutan nisbah elemen/Ca dalam otolit dan air ambien
didapati masing-masing adalah Sr/Ca>Mg/Ca>Ba/Ca dan
Sr/Ca>Ba/Ca>Mg/Ca.
Kata kunci: Ba/Ca; Mg/Ca; otolit; Sr/Ca; siri
talasik
RUJUKAN
Afiza Suriani, S., Mazlan,
A.G. & Mohamed, C.A.R. 2009a. Variation of Ca, Sr, Ba and Mg in the otolith
of giant mudskipper in west coast of Peninsular Malaysia. Pakistan
Biological Journal of Science 12(3): 231-238.
Afiza Suriani, S.,
Noorliza, Z. & Mohamed, C.A.R. 2009b. Kepekatan unsur makro dan surih dalam otolit, isi ikan siakap dan
air laut di Sedili Kechil. In Seminar Penyelidikan Pantai Timur: Mersing
Warisan Terpelihara. Mersing, 28-29 March, Malaysia.
Arai, T., Ikemoto, T.,
Kunito, T., Tanabe, S. & Miyazaki, N. 2002. Otolith microchemistry of the
conger eel, Conger myriaster. Journal of the Marine Biological
Association of the United Kingdom 82: 303-305.
Arai, T. & Miyazaki, N.
2001. Use of
otolith microchemistry to estimate the miratory history of the Russian
sturgeon, Acipenser guldenstadti. Journal of the Marine
Biological Association of the United Kingdom 81: 709-710.
Blaber, S.J.M. 2000. Tropical
Estuarine Fishes. Ecology, Exploitation and
Conservation. Fish Aqua. Res.
Ser., 7. Blackwell Science. pp. 129-140.
Campana, S.E. & Tzeng, W.N. 2000. Section 4:
Otolith composition. Fisheries Research 46: 287-288.
Campana, S.E. 1999. Chemistry and compositions
of fish otoliths: Pathways, mechanism and applications. Marine Ecology
Progress Series 188: 263-297.
Campana, S.E. & Neilson, J.D. 1985. Microstructure of fish otoliths. Canadian Journal of
Fisheries and Aquatic Science 42: 1014-1032.
Degens, E.T., Deuser, W.G. & Haedrich, R.L. 1969. Molecular structure and
composition of fish otoliths. International Journal of Life Oceans
and Coastal Waters 2: 105-113.
de Vries, M.C., Gillanders, M.B. & Elsdon,
T.S. 2005. Facilitation of barium uptake into otoliths: Influence of strontium
concentration and salinity. Geochimica Cosmochimica Acta 69: 4061-4072.
DOF (Department of Fisheries). 2007. Fisheries
Annual Statistical Vol 1., Putrajaya, p. 185.
Dwyer, K.S., Stephen, J.W. & Campana, S.E.
2003. Age determination, validation and growth of Grand Bank yellowtail
flounder (Limanda ferriginea). ICES Journal of Marine Science 60:
1123-1138.
Elsdon, T.S. &
Gillanders, B.M. 2003a. Reconstructing migratory patterns of fish based on environmental influences on
otolith chemistry. Fish Biology and Fisheries 13: 219-235.
Elsdon, T.S. &
Gillanders, B.M. 2003b. Relationship between water and otolith elemental concentrations in
juvenile black bream Acanthopagrus butcheri. Marine Ecology
Progress Series 260: 263-272.
Farrell, J. & Campana, S.E. 1996. Regulation of calcium and strontium deposition on the otoliths of juvenile
tilapia, Oreochromis niloticus. Comparative
Biochemistry and Physiology 115A(2): 103-109.
Gauldie, R.W., West, I.F.
& Coote, G.E. 1995. Evaluating otolith age estimates for Holosthertus atlanticus by
comparing patterns of checks, cycle in microincrement width, and cycles in
strontium and calcium composition. Bulletin of Marine Science 56:
76-102.
Gillanders, B.M. 2005. Using elemental chemistry
of fish otoliths to determine connectivity between estuarine and coastal
habitats. Estuarine Coastal Shelf Science 64: 47-57.
Grandcourt, E.M., Al
Abdessalaam, T.Z. & Francis, F. 2006. Age, growth, mortality and reproduction of the
blackspot snapper, Lutjanus fulviflamma (Forsskäl, 1775), in the
southern Arabian Gulf Fisheries Research 78: 203-210.
Grey, D.L. 1987. An overview
of Lates calcarifer in Australia and Asia. In Management of
Wild and Cultured Sea Bass Barramundi Lates calcarifer, edited by
Copland, J.W. ACIAR Proceeding 20: 15-21.
Hamer, P.A., Jenkins, G.P. & Coutin, P.
2006. Barium variation in Pagrus auratus (Sparidae) otoliths: A
potential indicator of migration between an embayment and ocean waters in
south-eastern Australia. Estuarine Coastal and Shelf Science 68:
686-702.
Kafemann, R., Adlerstein,
S.M. & Neukamm, R. 2000. Variation in otolith strontium and calcium
artios as an indicator of life-histories strategies of freshwater species
within a brackish water system. Fisheries Research 46: 313-325.
Leakey, C.D.B., Attrill,
M.J. & Fitzsimons, M.F. 2009. Multi-element otolith chemistry of juvenile
sole (Solea solea), whiting (Merlangius merlangus) and European
seabass (Dicentrarchus labrax) in the Thames estuary and adjacent
coastal regions. Journal of Sea Research 61(4): 268-274.
Lin, S.H., Chang, C.W.,
Iizuka, Y. & Tzeng, W.N. 2007. Salinities, not diet, affects strontium/calcium ratios in
otoliths of Anguilla japonica. Journal of Experimental Marine Biology and
Ecology 341: 254-263.
Kumar, A.R. & Riyazuddin, P. 2009. Comparative study of
analytical methods for the determination of chromium in groundwater samples containing iron. Microchemical
Journal 93(2): 236-241.
Miller, B.M., Clough, A.M., Batson, J.H. & Vachet, R.W.
2006. Transition metal binding to cod otolith proteins. Journal of Experimental Marine Biology and Ecology 329: 135-143.
Milton, D.A. & Chenery, S.R. 2001. Sources and uptakes
of trace metals in otoliths of juvenile barramundi (Lates calcarifer). Journal
of Experimental Marine Biology and Ecology 264: 47-65.
Moore, R. 1979. Natural sex invasion in the giant sea perch
(Lates calcarifer). Australian Journal of Marine and Freshwater
Research 30: 803-813.
Morales-Nin, B., Geffen, A.J., Cardona,
F., Kruber, C. & Sabarido-Rey, F. 2007. The effect of prestige oils ingestion on the growth and
chemical composition of turbot otoliths. Marine Pollution Bulletin 54:
1732-1741.
Payan, P., Kossmann, H., Watrin, A.,
Mayergostan, N. & Boeuf, G. 1997. Ionic composition of endolymph in teleosts – origin and
importance of endolymph alkalinity. Journal of Experimental Marine
Biology 200: 1905-1912.
Platt, C. & Popper, A.N. 1981. Fine
structure and function of the ear. In Hearing and Sound Communication
in Fishes, edited by Tavaloga, W.N., Popper, A.N. & Fay, R.R. New York. pp. 1-36.
Popper, A.N., Ramcharitar, J. &
Campana, S.E. 2005. Why otoliths? Insights from the inner ear physiology and fisheries biology. Marine Freshwater Research 56: 497-504.
Popper, A.N. & Coombs, S. 1980. Auditory
mechanisms in teleost fishes. American Scientist 68: 429-440.
Por, F.D. 1972. Hydrobiological notes on the high-salinity
waters of the Sinai Peninsula. Marine Biology 14(2): 111-119.
Russel, D.J. & Garrett, R.N. 1983. Use by juvenile
barramundi, Lates calcarifer (Bloch) and other fishes of temporary
supralittoral habitats in a tropical estuary in northern Australia. Australian
Journal of Marine Freshwater Research 34: 805-811.
Secor, D.H. & Rooker, J.R. 2000. Is otolith strontium a
useful scalar of life cycles in estuarine fishes? Fisheries Research 46:
359-371.
Summerhayes, C.P. & Thorpe, S.A. 1996. Oceanography:
An Illustrated Guide. London: Manson Publishing Ltd.
Tzeng, W.N. & Tsai, Y.C. 1994. Changes
in otolith microchemistry of the Japanese eel, Anguilla japonica, during
its migration from the ocean to the river of Taiwan. Journal of Fish
Biology 45: 1671-1683.
*Pengarang
untuk surat-menyurat; email: carmohd@ukm.my
|