Sains Malaysiana 43(5)(2014): 807–812
A
Numerical Study on Fracture-Plugging Behaviour of Granular Lost Circulation
Materials
(Kajian Berangka Tingkah Laku Tampalan Retak Bahan Tak Teratur
Bergranul)
GUI WANG*
& XIAOLIN PU
State Key Laboratory of Oil & Gas Reservoir
Geology and Exploitation, Southwest Petroleum University, Xindu, Chendu,
Sichuan, P. R. China
Diserahkan: 4 April 2013/Diterima: 3 September
2013
ABSTRACT
A distinct element approach has been introduced for simulating the
plugging performance of granular lost circulation materials (LCM)
in a fracture. This approach solves the fully coupled fracture walls, fluid and
particles system in an interactive environment. The effects of the particle
shape, size distribution and concentration on the fracture-plugging performance
of the granular LCM have been investigated using the
three-dimensional particle flow code (PFC3D). The simulated results showed
that the irregular granular LCM could plug a fracture width
larger than the sieving granulation by single-particle bridging type. The
particle size distribution (PSD) of LCM dominates
the plugging depth and efficiency in a fracture and there exists an optimum
concentration for maximum effect of LCM additives.
Keywords: Fracture; lost circulation material; numerical
simulation; plugging
ABSTRAK
Pendekatan elemen berbeza telah diperkenalkan bagi mensimulasi
prestasi tampalan bahan tak teratur (LCM) bergranul dalam retakan.
Pendekatan ini menyelesaikan masalah dinding retak berganding penuh, bendalir
serta sistem zarah dalam persekitaran interaktif. Kesan bentuk zarah,
pengagihan saiz dan kepekatan terhadap prestasi tampalan retak LCM bergranul
telah dikaji menggunakan kod aliran zarah tiga dimensi (PFC3D).
Keputusan simulasi menunjukkan bahawa LCM bergranul yang tidak sekata
boleh menampal retak yang lebih besar daripada penyaringan penggranulan
mengikut jenis penyambung satu zarah. Taburan saiz zarah (PSD)
daripada LCM menguasai kedalaman tampalan serta kecekapan dalam
retak dan wujud kepekatan optimum untuk kesan maksimum aditif LCM.
Kata kunci: Bahan tak teratur; retak; simulasi
berangka; tampalan
RUJUKAN
Apostolou, K. & Hrymak, A.N. 2008. Discrete
element simulation of liquid-particle flows. Computers & Chemical
Engineering 4-5: 841-856.
Cundall, P.A. & Strack, O.D. 1979. A
discrete numerical model for granular assembles. Geotechanique 1: 47-65.
Dick, M.A., Heinz, T.J., Svoboda, C.F. &
Aston, M. 2000. Optimizing the selection of bridging particles for reservoir
drilling fluids. SPE Paper 58793. SPE International Symposium on Formation
Damage Control, Lafayette, Louisiana. February 23-24.
Fathi, B., Basma, Y., Hamoud, A.H., Ali, B.,
Tayfun, B. & Peter, D.M. 2004. A comparative study of lost circulation
materials. Energy Sources 26: 1043-1051.
Fortin, J., Millet, O. & Saxcé, G.D. 2005.
Numerical simulation of granular materials by an improved discrete element
method. International Journal for Numerical Methods in Engineering 62:
639-663.
George, C.H. & Scott, P.P. 1951. An analysis
and the control of lost circulation. Journal of Petroleum Technology 3(6):
171-182.
Gatlin, C. & Nemir, C.E. 1961. Some effects
of size distribution on particle bridging in lost circulation and filtration
tests. Journal of Petroleum Technology 6: 575-578.
Garcia, X., Latham, J.P., Xiang, J. &
Harrison, J.P. 2009. A clustered overlapping sphere algorithm to represent real
particles in discrete element modeling. Geotechnique 9: 779-784.
Itasca Consulting Group, Inc. 2003. PFC3D
(particle flow code in 3 dimension) version 3.1. Itasca Consulting Group, Inc.
Kaageson-Loe, N.M., Sanders, M.W., Growcock, F.,
Taugbol, K., Horsrud, P., Singelstad, A.N. & Omland, T.H. 2009.
Particulate-based loss-prevention material - The secrets of fracture-sealing
revealed. SPE Drilling & Completion 24(4): 581-589.
Loeppke, G.E., Glowka, D.A. & Wright, E.K.
1990. Design and evaluation of lost-circulation materials for severe
environments. Journal of Petroleum Technology 3: 328-337.
Lu, M. & McDowell, G.R. 2006. The importance
of modeling ballast particle shape in the discrete element method. Granular
Matter. 1: 69-80.
Moazzeni, A., Nabaei, M. & Kharrat, R. 2012.
A breakthrough in controlling lost circulation in a pay zone by optimizing the
particle size distribution of shellfish and limestone chips. Petroleum
Science and Technology 3: 290-306.
Nayberg, T.M. 1987. Laboratory study of lost
circulation materials for use in both oil-based and water-based drilling muds. SPE
Drilling Engineering 3: 229-236.
Pilehvari, A.A. & Venkata, R.N. 2002. Effect
of material type and size distribution on performance of loss/seepage control
material. SPE Paper 73791. International Symposium and Exhibition on
Formation Damage Control, Lafayette, Louisiana. February 20-21.
Whitfill, D.L. & Hemphill, T. 2003. All
lost-circulation materials and systems are not created equal. SPE Paper 84319. SPE
Annual Technical Conference and Exhibition, Denver, Colorado. October 5-8.
*Pengarang untuk surat-menyurat; email: wanggui@126.com
|