Sains Malaysiana 43(5)(2014): 807–812

 

A Numerical Study on Fracture-Plugging Behaviour of Granular Lost Circulation Materials

(Kajian Berangka Tingkah Laku Tampalan Retak Bahan Tak Teratur Bergranul)

 

 

GUI WANG* & XIAOLIN PU

State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu, Chendu, Sichuan, P. R. China

 

Diserahkan: 4 April 2013/Diterima: 3 September 2013

 

ABSTRACT

 

A distinct element approach has been introduced for simulating the plugging performance of granular lost circulation materials (LCM) in a fracture. This approach solves the fully coupled fracture walls, fluid and particles system in an interactive environment. The effects of the particle shape, size distribution and concentration on the fracture-plugging performance of the granular LCM have been investigated using the three-dimensional particle flow code (PFC3D). The simulated results showed that the irregular granular LCM could plug a fracture width larger than the sieving granulation by single-particle bridging type. The particle size distribution (PSD) of LCM dominates the plugging depth and efficiency in a fracture and there exists an optimum concentration for maximum effect of LCM additives.

 

Keywords: Fracture; lost circulation material; numerical simulation; plugging

 

ABSTRAK

Pendekatan elemen berbeza telah diperkenalkan bagi mensimulasi prestasi tampalan bahan tak teratur (LCM) bergranul dalam retakan. Pendekatan ini menyelesaikan masalah dinding retak berganding penuh, bendalir serta sistem zarah dalam persekitaran interaktif. Kesan bentuk zarah, pengagihan saiz dan kepekatan terhadap prestasi tampalan retak LCM bergranul telah dikaji menggunakan kod aliran zarah tiga dimensi (PFC3D). Keputusan simulasi menunjukkan bahawa LCM bergranul yang tidak sekata boleh menampal retak yang lebih besar daripada penyaringan penggranulan mengikut jenis penyambung satu zarah. Taburan saiz zarah (PSD) daripada LCM menguasai kedalaman tampalan serta kecekapan dalam retak dan wujud kepekatan optimum untuk kesan maksimum aditif LCM.

 

Kata kunci: Bahan tak teratur; retak; simulasi berangka; tampalan

RUJUKAN

Apostolou, K. & Hrymak, A.N. 2008. Discrete element simulation of liquid-particle flows. Computers & Chemical Engineering 4-5: 841-856.

Cundall, P.A. & Strack, O.D. 1979. A discrete numerical model for granular assembles. Geotechanique 1: 47-65.

Dick, M.A., Heinz, T.J., Svoboda, C.F. & Aston, M. 2000. Optimizing the selection of bridging particles for reservoir drilling fluids. SPE Paper 58793. SPE International Symposium on Formation Damage Control, Lafayette, Louisiana. February 23-24.

Fathi, B., Basma, Y., Hamoud, A.H., Ali, B., Tayfun, B. & Peter, D.M. 2004. A comparative study of lost circulation materials. Energy Sources 26: 1043-1051.

Fortin, J., Millet, O. & Saxcé, G.D. 2005. Numerical simulation of granular materials by an improved discrete element method. International Journal for Numerical Methods in Engineering 62: 639-663.

George, C.H. & Scott, P.P. 1951. An analysis and the control of lost circulation. Journal of Petroleum Technology 3(6): 171-182.

Gatlin, C. & Nemir, C.E. 1961. Some effects of size distribution on particle bridging in lost circulation and filtration tests. Journal of Petroleum Technology 6: 575-578.

Garcia, X., Latham, J.P., Xiang, J. & Harrison, J.P. 2009. A clustered overlapping sphere algorithm to represent real particles in discrete element modeling. Geotechnique 9: 779-784.

Itasca Consulting Group, Inc. 2003. PFC3D (particle flow code in 3 dimension) version 3.1. Itasca Consulting Group, Inc.

Kaageson-Loe, N.M., Sanders, M.W., Growcock, F., Taugbol, K., Horsrud, P., Singelstad, A.N. & Omland, T.H. 2009. Particulate-based loss-prevention material - The secrets of fracture-sealing revealed. SPE Drilling & Completion 24(4): 581-589.

Loeppke, G.E., Glowka, D.A. & Wright, E.K. 1990. Design and evaluation of lost-circulation materials for severe environments. Journal of Petroleum Technology 3: 328-337.

Lu, M. & McDowell, G.R. 2006. The importance of modeling ballast particle shape in the discrete element method. Granular Matter. 1: 69-80.

Moazzeni, A., Nabaei, M. & Kharrat, R. 2012. A breakthrough in controlling lost circulation in a pay zone by optimizing the particle size distribution of shellfish and limestone chips. Petroleum Science and Technology 3: 290-306.

Nayberg, T.M. 1987. Laboratory study of lost circulation materials for use in both oil-based and water-based drilling muds. SPE Drilling Engineering 3: 229-236.

Pilehvari, A.A. & Venkata, R.N. 2002. Effect of material type and size distribution on performance of loss/seepage control material. SPE Paper 73791. International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana. February 20-21.

Whitfill, D.L. & Hemphill, T. 2003. All lost-circulation materials and systems are not created equal. SPE Paper 84319. SPE Annual Technical Conference and Exhibition, Denver, Colorado. October 5-8.

 

*Pengarang untuk surat-menyurat; email: wanggui@126.com

 

 

sebelumnya