Sains Malaysiana 43(8)(2014): 1231-1237
Penyediaan dan Pencirian Nanokomposit Epoksi Berpenguat
Getah Asli Terepoksida
(Preparation
and Characterisation of Epoxidized Natural Rubber Reinforced Epoxy
Nanocomposites)
Se Yong Eh Noum*, Sahrim Ahmad, Rozaidi Rasid, Yew Chin Hock,
Lee Yip Seng & Mou'ad A. Tarawneh
School of Applied Physic, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor,
Malaysia
Diserahkan:
19 Disember 2011/Diterima: 4 Oktober 2013
ABSTRAK
Komposit epoksi berpengisi hibrid
OMMT (organo-monmorilonit) dan getah asli terepoksida (ENR) telah
dihasilkan dengan menggunakan kaedah penyemperitan berskru kembar
pusingan searah. Ujian regangan ke atas sistem epoksi yang dihasilkan
menunjukkan modulus Young bagi komposit hibrid epoksi adalah lebih
tinggi daripada resin tanpa pengisi dan nilai modulus didapati meningkat
dengan peningkatan komposisi OMMT dalam matriks (setinggi 40% peningkatan).
Hal ini dipercayai adalah disebabkan oleh sifat tegar lapisan MMT.
Sementara itu, peningkatan luas permukaan kawasan antara fasa ekoran
kehadiran fasa penambah didapati telah mengurangkan tegasan alah
dan terikan akhir komposit hibrid yang dihasilkan. Pemeriksaan mikrostruktur
komposit hibrid epoksi melalui TEM dan XRD mendedahkan taburan OMMT
dalam matriks epoksi dengan susunan interkalasi dan pengelupasan.
Analisis DSC ke atas sampel yang termatang menunjukkan bahawa Tg
sistem komposit hibrid adalah rendah berbanding dengan sistem perduaan
(E5B dan E5LE). Pengurangan ketumpatan taut silang disyaki merupakan
punca penyusutan Tg ini.
Kata kunci: Getah asli
terepoksida; komposit epoksi; organo-monmorilonit; penyemperitan berskru kembar
ABSTRACT
OMMT
(organo-montmorillonite) and epoxidized natural rubber (ENR) filled
epoxy hybrid composites were produced via co-rotating twin-screw
extrusion technique. Tensile test on the epoxy composites systems
shows that the Young's modulus of the epoxy hybrid composites were
higher than the Young's modulus of unfilled epoxy and the value
of the modulus were found to be increasing with the increase of
OMMT composition in the matrix (exceeding 40% increment). This finding
is believed to be attributed to the stiff characteristic of MMT.
Meanwhile, the presence of fillers resulted in the decrement of
yeild stress and strain at break of the hybrid composites. Microstructure
examination on the hybrid composites via TEM and XRD techniques
showed that the distribution of OMMT in the matrix consist of intercalation
and exfoliation. DSC analysis on the cured sample showed that the
Tg of the hybrid system is lower than the binary system
(E5B and E5LE). It was suggested that the decrement of the cross
link density is the reason for the decline in Tg.
Keywords: Epoxidized natural rubber; epoxy composites; organo-monmorillonite;
twin screw extruder
RUJUKAN
Barcia, F.L., Amaral, T.P.
& Soares, B.G. 2003. Synthesis and properties of epoxy resin modified with
epoxy-terminated liquid polybutadiene. Polymer 44(19): 5811-5819.
Bussi, P. & Ishida, H.
1994. Partially miscible blends of epoxy resin and epoxidized rubber:
Structural characterization of the epoxidized rubber and mechanical properties
of the blends. Journal of Applied Polymer 53(4): 441-454.
Chozhan, C.K., Alagar, M.,
Sharmila, R.J. & Gnanasundaram, P. 2007. Thermo mechanical behavior of
unsaturated polyester toughened epoxy-clay hybrid nanocomposites. Journal of Polymer Research 14(4):
319-328.
Frohlich, J., Kautz, H.,
Thomann, R., Frey, H. & Mulhaupt, R. 2004. Reactive core/shell type
hyperbranched blockcopolymers as new liquid rubbers for epoxy toughening. Polymer 45(7): 2155-2164.
Ha, S.R., Ryu, S.H., Park,
S.J. & Rhee, K.Y. 2007. Effect of clay surface modification and
concentration on the tensile performance of clay/epoxy nanocomposites. Materials Science and Engineering A 448(1-2): 264-268.
Hong, S.G. & Wu, C.S.
2000. DSC and FTIR analyses of the curing behavior of epoxy/DICY/solvent
systems on hermetic specimens. Journal of
Thermal Analysis and Calorimetry 59(3): 771-719.
Ibrahim Abdullah &
Zuriati Zakaria. 1989. Pendepolimeran fotokimia getah asli. Sains Malaysiana 18(2): 99-109.
Kim, J.K., Hu, C.G., Woo,
R.S.C. & Sham, M.L. 2004. Moisture barrier characteristics of
organoclay-epoxy nanocomposites. Composites
Science and Technology 65(5): 805-813.
Li, H.Y., Zhang, Z.S., Ma,
X.F., Hu, M., Wang, X.Y. & Fan, P.F. 2007. Synthesis and characterization
of epoxy resin modified with nano-SiO2 and
γ-glycidoxypropyltrimethoxy silane. Surface
& Coatings Technology 201(9-11): 5269-5272.
Liu, W.P., Hoa, S.V. &
Pugh, M. 2004. Morphology and performance of epoxy nanocomposites modified with
organoclay and rubber. Polymer
Engineering & Science 44(6): 1178-1186.
May, C.A. & Tanaka, Y. 1973. Epoxy Reins. New York: Marcel Dekker
Inc.
Mishra, J.K., Chang, Y.W.
& Choi, N.S. 2007. Preparation and characterization of rubber-toughened
polyp(trimethylene terephthalate)/organoclay nanocomposite. Polymer
Engineering & Science 47(6): 863-870.
Padmanabhan Babu. 2008.
Understanding the extruder processing zone: The heart of a twin screw extruder. Plastic Additives & Compounding 10(2): 30-35.
Pinnavaia, T.J., Lan, T.,
Wang, Z., Shi, H.Z. & Kaviratna, P.D. 2000. Clay-reinforced epoxy
nanocomposites: Synthesis, properties, and mechanism of formation. ACS
Symposium Series 622(17): 250-261.
Poisson, N., Maazouz, A.,
Sautereau, H., Taha, M. & Gambert, X. 1998. Curing of dicyandiamide epoxy
resins accelerated with substituted ureas. Journal
of Applied Polymer Science 69(12): 2487-2497.
Ratna, D. 2001. Phase
separation in liquid rubber modified epoxy mixture: Relationship between curing
conditions, morphology and ultimate behavior. Polymer 42(9): 4209-4218.
Thomas, R., Durix, S.,
Sinturel, C., Omonov, T., Goossens, S., Groeninckx, G., Moldenaers, P. &
Thomas, S. 2007. Cure kinetics, morphology and miscibility of modified
DGEBA-based epoxy resin - Effects of a liquid rubber inclusion. Polymer 48(6): 1695-1710.
Thomas, R., Yumei, D., He,
Y.L., Yang, L., Moldenaers, P., Yang, W.M., Czigany, T. & Thomas, S. 2008.
Miscibility, morphology, thermal, and mechanical properties of a DGEBA-based
epoxy resin toughened with a liquid rubber. Polymer 49(1): 278-294.
Treece, M.A., Zhang, W.,
Moffitt, R.D. & Oberhauser, J.P. 2007. Twin-screw extrusion of
polypropylene-clay nanocomposites: Influence of masterbatch processing, screw
rotation mode, and sequence. Polymer
Engineering and Science 47(6): 898-911.
Wang, L., Wang, K., Chen, L.,
Zhang, Y.W. & He, C.B. 2006. Preparation, morphology and thermal/mechanical
properties of epoxy/nanoclay composite. Composites:
Part A 37(11): 1890-1896.
Wang, J.W. & Qin, S.C.
2007. Study on the thermal and mechanical properties of epoxy-nanoclay
composites: The effect of ultrasonic stirring time. Materials Letters 61(19-20): 4222-4224.
*Pengarang untuk surat-menyurat; email: seyong01my@yahoo.co.uk
|