Sains Malaysiana 43(8)(2014): 1249-1257
Scaling Transformation for Free Convection Flow of a
Micropolar Fluid along a Moving Vertical Plate in a Porous Medium with Velocity
and Thermal Slip Boundary Conditions
(Transformasi Penskalaan untuk Aliran Olakan Bebas
Bendalir Mikropolar Sepanjang Plat Menegak dalam Medium Berliang dengan
Syarat Sempadan Slip Halaju dan Haba)
A.A. Mutlag1,2*, Md. Jashim Uddin1,2 & Ahmad Izani Md. Ismail1
1School
of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
2Mathematics Department, College of Education
for Pure Science, AL- Anbar University, ALAnbar Iraq
3Mathematics
Department, American International University-Bangladesh, Banani Dhaka, 1213
Bangladesh
Diserahkan: 11 Januari 2013/Diterima: 9 Disember 2013
Abstract
We study and discuss the effect of thermal slip on
steady free convection flow of a viscous, incompressible micropolar fluid past a vertical moving plate in a saturated porous medium. The effect of
viscous dissipation is incorporated in the energy equation. The associated
partial differential equations are transformed into a system of ordinary
differential equations using similarity transformations generated by a group method and this system is then
solved numerically. The effect of controlling parameters on the dimensionless velocity, angular velocity and temperature as well as
friction factor, couple stress factor and heat transfer
rate are shown graphically and discussed in detail. It is found that the
dimensional velocity and angular velocity decrease whilst the temperature increases with
velocity slip parameter. It is further found that thermal slip decreases the
dimensional velocity and temperature but increases the dimensional angular
velocity. Data from published
work and our results are found
to be in good agreement.
Keywords: Free convection; micropolar fluid; moving plate; porous medium; scaling group; velocity and thermal slip boundary
conditions
Abstrak
Kami mengkaji dan membincangkan kesan slip haba pada aliran olakan bebas tak mampat bendalir mikro-kutub
likat yang mantap melalui plat menegak yang bergerak dalam medium berliang tepu. Kesan penghambaran likat dimasuk ke dalam persamaan tenaga.
Persamaan pembezaan separa bersekutu dijelmakan kepada sistem persamaan pembezaan biasa menggunakan penjelmaan keserupaan yang dijanakan menggunakan
kaedah kumpulan dan sistem ini kemudiannya diselesaikan secara berangka. Kesan parameter pengawal halaju tak berdimensi, halaju sudut dan suhu serta faktor geseran, faktor regangan pasangan dan kadar pemindahan haba ditunjukkan secara grafik dan dibincangkan secara terperinci.
Didapati bahawa halaju berdimensi dan halaju sudut menurun manakala
suhu naik dengan slip halaju.
Adalah selanjutnya didapati bahawa slip haba menurun halaju berdimensi
dan suhu tetapi meningkatkan halaju sudut berdimensi. Data daripada kerja yang telah diterbitkan dan keputusan kami didapati mempunyai persamaan.
Kata kunci: Bendalir mikropolar; kumpulan
penskalaan; medium berliang; perolakan bebas; plat bergerak; syarat
sempadan slip termal halaju dan termal
RUJUKAN
Ahmad, K., Nazar, R. &
Pop, I. 2012. Mixed
convection in laminar film flow of a micropolar fluid. International Communications in Heat and Mass Transfer 39:
36-39.
Ali, A., Amin, N. & Pop, I. 2010. Unsteady mixed convection boundary layer from a
circular cylinder in a micropolar fluid. International
Journal of Chemical Engineering 2010: 417875.
Beg, O.A., Ramachandra Prasad, V., Vasu, B., Bhaskar Reddy, N., Li,
Q. & Bhargava, R. 2011. Free convection heat and
mass transfer from an isothermal sphere to a micropolar regime with Soret/Dufour effects. International Journal of Heat and
Mass Transfer 54: 9-18.
Bejan, A. & Khair,
K.R. 1985. Heat and mass transfer
by natural convection in a porous medium. International Journal of Heat and
Mass Transfer 28: 909-918.
Bhattacharyya, K., Mukhopadhyay,
S. & Layek, G.C. 2011. Steady boundary layer slip
flow and heat transfer over a flat porous plate embedded in a porous
media. Journal of Petroleum Science and
Engineering 78: 304-309.
Butcher, J.C. 2008. Numerical Methods for Ordinary Differential
Equations. England. John Wiley & Sons,
Ltd.
Cheng, C. 2011. Natural
convection boundary layer flow of a micropolar fluid
over a vertical permeable cone with variable wall temperature. International
Communications in Heat and Mass Transfer 38: 429-433.
El-Aziz, M.A. 2013. Mixed convection flow of a micropolar fluid from an unsteady stretching surface with viscous dissipation. Journal of
the Egyptian Mathematical Society 21: 385-394.
Eringen, A.C. 1966. Theory of micropolar fluids. Journal of Mathematics and
Mechanics 16: 1-18.
Eringen, A.C. 1972. Theory of thermomicropolar fluids. Journal of Mathematical
Analysis and Applications 38: 480-496.
Hayat, T., Javed, T. &
Abbas, Z. 2009. MHD flow of a micropolar fluid near a
stagnation-point towards a non-linear stretching surface. Nonlinear
Analysis: Real World Applications 10: 1514-1526.
Ingham, D.B. & Pop, I. 2005. Transport Phenomena in Porous Media. 3rd
ed. Oxford, UK: Elsevier.
Ishak, A., Nazar,
R. & Pop, I. 2006. Flow of a micropolar fluid on a continuous moving surface. Archives
of Mechanics 58:
529-541.
Lukaszewicz, G. 1999. Micropolar Fluids: Theory and Applications. New York: Springer.
Mukhopadhyay, S. 2011. Effects of slip on unsteady mixed
convective flow and heat transfer past a porous stretching surface. Nuclear Engineering and Design 241: 2660-2665.
Mutlag, A.A., Uddin, M.J., Hamad, M.A.A. & Ismail,
A.I.M. 2013. Heat transfer analysis for falkner-skan boundary layer flow past a stationary wedge with slips boundary conditions
considering temperature-dependent thermal conductivity. Sains Malaysiana 42: 855-862.
Nadeem, S., Hussain, M. & Naz,
M. 2010. MHD stagnation flow of
a micropolar fluid through a porous medium. Meccanica 45: 869-880.
Nield, D.A. & Bejan, A. 2006. Convection in Porous
Media. 3rd ed. New York: Springer.
Rahman, M.M., Aziz, A. & Al-Lawatia, M.A.
2010. Heat transfer in micropolar fluid along an
inclined permeable plate with variable fluid properties. International Journal of Thermal
Sciences 49: 993-1002.
Reena & Rana,
U.S. 2009. Effect of dust particles on rotating micropolar fluid heated from below saturating a porous medium. Applications and Applied
Mathematics 4: 189-217.
Rosali, H., Ishak,
A. & Pop, I. 2012. Micropolar fluid flow towards stretching/shrinking sheet in a porous medium
with suction. International
Communications in Heat and Mass Transfer 39: 826-829.
Sajid, M., Ali, N. & Hayat, T., 2009. On exact solutions for thin film
flows of a micropolar fluid. Communications in Nonlinear Science
and Numerical Simulation 14: 451-461.
Trevisan,
O.V. & Bejan, A. 1990. Combined heat and mass
transfer by natural convection in a porous medium. Advances in Heat Transfer 20: 315-352.
Uddin, M.J., Hamad, M.A.A. & Ismail, A.I.M. 2012a. Investigation of heat mass transfer for combined
convective slips flow: A lie group analysis. Sains Malaysiana 41: 1145-1155.
Uddin, M.J., Khan, W.A. & Ismail, A.I.M. 2012b. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating
boundary condition. Plos One 7: e49499.
*Pengarang untuk surat-menyurat; email: alassafi2005@yahoo.com
|