Sains Malaysiana 43(9)(2014): 1379–1388

 

Semi-distributed Rainfall-runoff Modeling utilizing ASTER DEM in Pinang

Catchment of Malaysia

(Model Separa Ederan Curahan Hujan-Aliran menggunakan ASTER DEM di Kawasan Tadahan

Pinang Malaysia)

ALI H. AHMED SULIMAN1*, WEBSTER GUMINDOGA2, AYOB KATIMON3

& INTAN ZAURAH MAT DARUS4

 

1Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai

Malaysia

 

2Dept. of Civil Engineering, University of Zimbabwe, PO Box MP 167, Harare

Zimbabwe

 

3School of Bioprocess Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia

 

4Faculty of Mechanical Engineering, UniversitiTeknologi Malaysia, 81310 UTM, Skudai, Malaysia

 

Received: 24 Julai 2013/Accepted: 17 Disember 2013

 

ABSTRACT

 

This paper presents the application of TOPMODEL in the Pinang catchment of Malaysia for stream flow simulation. An attempt has been made to use remote-sensing data (ASTER DEM of 30 m resolution) as a primary input for TOPMODEL in order to simulate the stream flow pattern of this tropical catchment. A calibration period was executed based on 2007-2008 hydro-meteorological dataset which gave a satisfactory Nash-Sutcliffe model (NS) model efficiency of 0.749 and a relative volume error (RVE) of -19.2. The recession curve parameter (m) and soil transmissivity at saturation zone (To), were established as the most sensitive parameters through a sensitivity analysis processes. Hydro-meteorological datasets for the period between 2009 and 2010 were used to validate the model which resulted in satisfactory efficiencies of 0.774 (NS) and -19.84 (RVE), respectively. This study demonstrated the ability ASTER DEM acquired from remote sensing to generate the required TOPMODEL parameters for stream flow simulation which gives insights into better management of available water resources.

 

Keywords: ASTER DEM; Pinang; remote sensing; sensitivity analysis; topographic index (TI) tropical area

 

ABSTRAK

Kertas kerja ini membentangkan penggunaan TOPMODEL di kawasan tadahan Pinang, Malaysia bagi simulasi aliran sungai. Percubaan telah dibuat untuk menggunakan data penderiaan jauh (ASTER DEM resolusi 30 m) sebagai input utama bagi TOPMODEL untuk mensimulasikan corak aliran sungai tadahan tropika ini. Tempoh penentukuran telah disempurnakan berdasarkan dataset meteorologi hidro 2007-2008 yang memuaskan model Nash-Sutcliffe (NS); model kecekapan 0.749 dan relatif jumlah kesilapan (RVE)-19.2. Parameter lengkung kemelesetan (m) dan kememancaran tanah di zon tepu (To), telah ditubuhkan sebagai parameter yang paling sensitif melalui proses analisis sensitiviti. Meteorologi hidro dataset untuk tempoh antara tahun 2009 dan 2010 telah digunakan untuk mengesahkan model yang mengakibatkan kecekapan yang memuaskan masing-masing 0.774 (NS) dan-19.84 (RVE). Kajian ini menunjukkan keupayaan yang diperoleh ASTER DEM daripada teknologi pengesanan jarak jauh untuk menjana parameter TOPMODEL yang diperlukan untuk simulasi aliran sungai yang memberikan pemahaman lebih baik tentang pengurusan sumber air sedia ada.

 

Kata kunci: Analisis sensitiviti; DEM ASTER; indeks topografi (TI); kawasan tropika, pengesanan jarak jauh; Pinang

RUJUKAN

Beven, K. & Freer, J. 2000. A dynamic TOPMODEL. Hydrological Processes 15(10): 1993-2011.

Beven, K. 1997a. TOPMODEL: A critique. Hydrological Processes 11: 1069-1085.

Beven, K.J. 1997b. Distributed Hydrological Modelling: Applications of the TOPMODEL Concept. Chichester, U.K.: John Wiley and Sons Ltd.

Beven, K.J., Lamb, R., Quinn, P.F., Romanowicz, R. & Freer, J. 1995. TOPMODEL. In Computer Models of Watershed Hydrology, edited by Singh, V.P. Water Resources Publications. pp. 627-668.

Beven, K.J. & Kirkby, M.J. 1979. A physically based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24(1): 43-69.

Bruneau, P., Gascuel-Odoux, C., Robin, P., Merot, P. & Beven, K. 1995. Sensitivity to space and time resolution of a hydrological model using digital elevation data. Hydrological Processes 9: 69-81.

Campling, P., Gobin, A., Beven, K. & Feyen, J. 2002. Rainfall-runoff modelling of a humid tropical catchment: the TOPMODEL approach. Hydrological Processes 16: 231-253.

Candela, A., Noto, L.V. & Aronica, G. 2005. Influence of surface roughness in hydrological response of semiarid catchments. J. Hydrol. 313(3): 119-131.

Chappell, N.A., Vongtanaboon, S., Jiang, Y. & Tangtham, N. 2006. Return-flow prediction and buffer designation in two rainforest headwaters. Forest Ecology and Management 224: 131-146.

Chappell, N.A., Franks, S.W. & Larenus, J. 1998. Multi-scale permeability estimation in a tropical catchment. Hydrological Processes 12: 1507-1523.

Chen, X., Cheng, Q., Chen, Y.D., Smettem, K. & Xu, C. 2010. Simulating the integrated effects of topography and soil properties on runoff generation in hilly forested catchments, south China. Hydrological Processes 24(6): 714-725.

Chen, Y., Zhu, D. & Zhao, J. 2003. Small basin flash flood simulation with TOPMODEL. In GIS and Remote Sensing in Hydrology, Water Resources and Environment (IAHS Proceedings & Reports) vol. 289, edited by Chen, Y., Takara, K., Cluckie, I.D. & De Smedt, F.H. IAHS Publication. pp. 41-49.

Elsner, M.M., Cuo, L., Voisin, N., Deems, J.S., Hamlet, A.F., Vano, J.A., Mickelson, K.E.B, Lee, S.Y. & Lettenmaier, D.P. 2010. Implications of 21st century climate change for the hydrology of Washington State. Climatic Change 102(1-2): 225-260.

Fleischbein, K., Wilcke, W., Valarezo, C., Zech, W. & Knoblich, K. 2006. Water budgets of three small catchments under montane forest in ecuador: Experimental and modelling approach. Hydrological Processes 20(12): 2491-2507.

Freer, J.E., McMillan, H., McDonnell, J.J. & Beven, K.J. 2004. Constraining dynamic TOPMODEL responses for imprecise water table information using fuzzy rule based performance measures. Journal of Hydrology 291(3-4): 254-277.

Gallant, J. & Hutchinson, M. 1996. Towards an understanding of landscape scale and structur. In Proceedings, Third International Conference/Workshop on Integrating GIS and Environmental Modelling, Santa Fe, NM. pp. 21-26.

Gallart, F., Llorens, P. & Latron, J. 1994. Studying the role of old agricultural terraces on runoff generation in a small Mediterranean mountainous basin. Journal of Hydrology 159: 291-303.

Gumindoga, W., Rwasoka, D.T. & Murwira, A. 2011. Simulation of streamflow using TOPMODEL in the upper save river catchment of Zimbabwe. Physics and Chemistry of the Earth 36: 806-813.

Güntner, A., Uhlenbrook, S., Seibert, J. & Leibundgut, C. 1999. Multi-criterial validation of TOPMODEL in a mountainous catchment. Hydrological Processes 13(11): 1603-1620.

Huang, B. & Jiang, B. 2002. AVTOP: A full integration of TOPMODEL into GIS. Environmental Modeling and Software 17(3): 261-268.

Huang, J.C., Lee, T.Y. & Kao, S.J. 2009. Simulating typhoon-induced storm hydrographs in subtropical mountainous watershed: An integrated 3-layer TOPMODEL. Hydrology and Earth System Sciences 13: 27-40.

Ismail, W.R. 2000. The hydrology and sediment yield of the Sungai Air Terjun catchment, Penang Hill, Malaysia. Journal of Hydrological Sciences 45(6): 897-910.

Izham, M.Y., M. Uznir, U., Alias, A.R., Ayob, K., W. Ruslan, I. 2011. Influence of geo-reference for saturated excess overland flow modeling using 3D volumetric soft geo-objects. Computers & Geosciences 37(4): 598-609.

Janssen, P.H.M. & Heuberger, P.S.C. 1995. Calibration of process-oriented models. Ecol. Model. 83(1-2): 55-66.

Jing Xu, Liliang Ren, Fei Yuan & Xiaofan Liu. 2012. The solution to DEM resolution effects and parameter inconsistency by using scale-invariant TOPMODEL. Hydrology Research 43(1-2): 146-155.

Kavetski, D., Kuczera, G. & Franks, S.W. 2003. Semidistributed hydrological modeling: A ‘saturation path’ perspective on TOPMODEL and VIC. Water Resour. Res. 39 art.no. 1246.

Kinner, D.A. & Stallard, R.F. 2004. Identifying storm flow paths in a rainforest catchment using hydrological and geochemical modelling. Hydrological Processes 18: 2861-2875.

Kwanyuen, B. & Pooworakulchai, C. 2003. Comparison of HEC-HMS model and Topmodel for runoff prediction in Lampachi Basin. Kamphaengsaen Acad. J. 1: 49-55.

Lee, Giha & Kim, Joo-Cheol. 2011. Comparative analysis of geomorphologic characteristics of DEM-based drainage networks. Journal of Hydrologic Engineering 16(2): 137-147.

Lin, Kairong, Qiang Zhang & Xiaohong Chen. 2010. An evaluation of impacts of DEM resolution and parameter correlation on TOPMODEL modeling uncertainty. Journal of Hydrology 394(3-4): 370-383.

LPDAAC. 2001. ASTER Digital Elevation Model (DEM) Product Description, http://asterweb.jpl.nasa.gov/ content/03_ data/01_Data_Products/DEM.

Molicova, H., Grimalidi, M., Bonell, M. & Hubert, P. 1997. Using TOPMODEL towards identifying and modelling the hydrological patterns within a headwater, humid tropical catchment. Hydrological Processes 11: 1169-1196.

Moore, I.D., Lewis, A. & Gallant, J.C. 1993. Terrain attributes: Estimation methods and scale effects. In Modelling Change in Environmental Systems, edited by Jakeman, A.J., Beck, M.B. & McAleer, M.J. New York: John Wiley and Sons Ltd. pp. 189-214.

Nash, J.E. & Sutcliffe, J.V. 1970. River flow forecasting through conceptual models. Part I: A discussion of principles. Journal of Hydrology 10: 282-290.

O’Connell, P.E. 1991. A historical perspective. In Proc. NATO Advanced Institute on Recent Advances in the Modeling of Hydrologic Systems (Sintra, Portugal, 10-23 July 1988), edited by Bowles, D.S. & O’Connell, P.E. The Netherlands: Kluwer, Dordrecht.

Pradhan, N.R., Ogden, F.L., Tachikawa, Y. & Takara, K. 2008. Scaling of slope, upslope area, and soil water deficit: Implications for transferability and regionalization in topographic index modeling. Water Resources Research 44(12): DOI: 10.1029/2007WR006667.

Qin, X., Ahn, S., Speed, T.P. & Rubin, G.M. 2007. Global analyses of mRNA translational control during early Drosophila embryogenesis. Genome Biol. 8, R63.

Quinn, P.F., Mewett, C.T.M. & Dayawansa, N.D.K. 2008. TOPCAT-NP: A minimum information requirement model for simulation of flow and nutrient transport from agricultural systems. Hydrological Processes 22: 2565-2580.

Quinn, P., Cummins, M., Kase, J., Martin, E. & Weissman, S. 1996. Development of categorical representations for above and below spatial relations in 3- to 7-month old infants. Developmental Psychology 32(5): 942-950.

Quinn, P.F., Beven, K.J. & Lamb, R. 1995. The Ln(a/TanB) Index: How to calculate it and how to use it within the Topmodel framework. Hydrological Processes 9: 161-182.

Quinn, P.F., Beven, K.J., Chevallier, P. & Planchon, O. 1991. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes 5: 59-79.

Romanowicz, R. 1997. A MATLAB implementation of TOPMODEL. Hydrological Processes 11: 1115-1129.

Sigdel, Abinashi., Jha, Raghunath, Bhatta, Dhruba, Abou-Shanab, Reda A.I., Sapireddy, Veer Raghavulu and Byong-Hun Jeon. 2011. Applicability of TOPMODEL in the catchments of Nepal: Bagmati River Basin. Geosystem Engineering 14(4): 181-190.

Tallaksen, L.M. 1995. A review of baseflow recession analysis. Journal of Hydrology 165: 349-370.

Vithanage, Bihawala I.C. 2009. Analysis of nutrient dynamics in Roxo catchment using remote sensing data and numerical modeling. MSc Thesis, ITC, Educational material (unpublished).

Vongtanaboon, S. & Chappell, N.A. 2009. Validation and interpretation of spatial soil-water modelling in the tropical subcatchments of maechaem basin. Paper presented at the IAHS-AISH Publication 326: 174-180.

Wolock, D.M. & McCabe, G.J. 2000. Differences in topographic characteristics computed from 100- and 1000 m resolution digital elevation model data. Hydrological Processes 14(6): 987-1002.

Wolock, D.M. & Price, C.V. 1994. Effects of digital elevation model map scale and data resolution on a topography based watershed model. Water Resour. Res. 30(11): 3041-3052.

Zhang, W. & Montgomery, D.R. 1994. Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resour. Res. 30: 1019-1028.

Zhang, X., Drake, N.A., Wainwright, J. & Mulligan, M. 1999. Comparison of slope estimates from low resolution DEMs: Scaling issues and a fractal method for their solution. Earth Surface Processes and Landforms 24: 763-779.

 

 

*Pengarang untuk surat menyurat; email: wateraliwater@gmail.com

 

 

 

sebelumnya