Sains Malaysiana 43(9)(2014): 1379–1388
Semi-distributed Rainfall-runoff
Modeling utilizing ASTER DEM in Pinang
Catchment of Malaysia
(Model
Separa Ederan Curahan Hujan-Aliran menggunakan ASTER DEM di Kawasan Tadahan
Pinang
Malaysia)
ALI H. AHMED SULIMAN1*, WEBSTER GUMINDOGA2, AYOB KATIMON3
& INTAN ZAURAH MAT DARUS4
1Faculty of Civil
Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai
Malaysia
2Dept. of Civil
Engineering, University of Zimbabwe, PO Box MP 167, Harare
Zimbabwe
3School of Bioprocess
Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
4Faculty of Mechanical
Engineering, UniversitiTeknologi Malaysia, 81310 UTM, Skudai, Malaysia
Received: 24 Julai
2013/Accepted: 17 Disember 2013
ABSTRACT
This paper presents
the application of TOPMODEL in
the Pinang catchment of Malaysia for stream flow simulation. An attempt has
been made to use remote-sensing data (ASTER
DEM of 30 m resolution) as a primary input for TOPMODEL in order to simulate the stream flow pattern of this tropical
catchment. A calibration period was executed based on 2007-2008
hydro-meteorological dataset which gave a satisfactory Nash-Sutcliffe model (NS) model efficiency of
0.749 and a relative volume error (RVE)
of -19.2. The recession curve parameter (m) and soil transmissivity at
saturation zone (To),
were established as the most sensitive parameters through a sensitivity
analysis processes. Hydro-meteorological datasets for the period between 2009
and 2010 were used to validate the model which resulted in satisfactory
efficiencies of 0.774 (NS) and -19.84 (RVE),
respectively. This study demonstrated the ability ASTER
DEM acquired from remote sensing to generate the required TOPMODEL parameters for
stream flow simulation which gives insights into better management of available
water resources.
Keywords: ASTER DEM; Pinang; remote
sensing; sensitivity analysis; topographic index (TI)
tropical area
ABSTRAK
Kertas kerja ini
membentangkan penggunaan TOPMODEL di
kawasan tadahan Pinang, Malaysia bagi simulasi aliran sungai. Percubaan telah
dibuat untuk menggunakan data penderiaan jauh (ASTER
DEM resolusi 30 m) sebagai input utama bagi TOPMODEL untuk mensimulasikan corak aliran sungai tadahan tropika ini.
Tempoh penentukuran telah disempurnakan berdasarkan dataset meteorologi hidro
2007-2008 yang memuaskan model Nash-Sutcliffe (NS);
model kecekapan 0.749 dan relatif jumlah kesilapan (RVE)-19.2.
Parameter lengkung kemelesetan (m) dan kememancaran tanah di zon tepu (To), telah ditubuhkan sebagai
parameter yang paling sensitif melalui proses analisis sensitiviti. Meteorologi
hidro dataset untuk tempoh antara tahun 2009 dan 2010 telah digunakan untuk
mengesahkan model yang mengakibatkan kecekapan yang memuaskan masing-masing
0.774 (NS) dan-19.84 (RVE). Kajian ini menunjukkan
keupayaan yang diperoleh ASTER DEM daripada
teknologi pengesanan jarak jauh untuk menjana parameter TOPMODEL yang diperlukan untuk simulasi aliran sungai yang memberikan
pemahaman lebih baik tentang pengurusan sumber air sedia ada.
Kata kunci: Analisis
sensitiviti; DEM ASTER;
indeks topografi (TI);
kawasan tropika, pengesanan jarak jauh; Pinang
RUJUKAN
Beven, K. & Freer, J. 2000. A dynamic TOPMODEL. Hydrological
Processes 15(10): 1993-2011.
Beven, K. 1997a. TOPMODEL: A critique. Hydrological Processes 11:
1069-1085.
Beven, K.J. 1997b. Distributed Hydrological Modelling:
Applications of the TOPMODEL Concept. Chichester, U.K.: John Wiley and Sons
Ltd.
Beven, K.J., Lamb, R., Quinn, P.F., Romanowicz, R. & Freer, J.
1995. TOPMODEL. In Computer Models of Watershed Hydrology, edited by
Singh, V.P. Water Resources Publications. pp. 627-668.
Beven, K.J. & Kirkby, M.J. 1979. A physically based variable
contributing area model of basin hydrology. Hydrological Sciences Bulletin 24(1):
43-69.
Bruneau, P., Gascuel-Odoux, C., Robin, P., Merot, P. & Beven,
K. 1995. Sensitivity to space and time resolution of a hydrological model using
digital elevation data. Hydrological Processes 9: 69-81.
Campling, P., Gobin, A., Beven, K. & Feyen, J. 2002.
Rainfall-runoff modelling of a humid tropical catchment: the TOPMODEL approach. Hydrological Processes 16: 231-253.
Candela, A., Noto, L.V. & Aronica, G. 2005. Influence of
surface roughness in hydrological response of semiarid catchments. J.
Hydrol. 313(3): 119-131.
Chappell, N.A., Vongtanaboon, S., Jiang, Y. & Tangtham, N.
2006. Return-flow prediction and buffer designation in two rainforest
headwaters. Forest Ecology and Management 224: 131-146.
Chappell, N.A., Franks, S.W. & Larenus, J. 1998. Multi-scale
permeability estimation in a tropical catchment. Hydrological Processes 12:
1507-1523.
Chen, X., Cheng, Q., Chen, Y.D., Smettem, K. & Xu, C. 2010.
Simulating the integrated effects of topography and soil properties on runoff
generation in hilly forested catchments, south China. Hydrological Processes 24(6): 714-725.
Chen, Y., Zhu, D. & Zhao, J. 2003. Small basin flash flood
simulation with TOPMODEL. In GIS and Remote Sensing in Hydrology, Water Resources
and Environment (IAHS Proceedings & Reports) vol. 289, edited by Chen,
Y., Takara, K., Cluckie, I.D. & De Smedt, F.H. IAHS Publication. pp. 41-49.
Elsner, M.M., Cuo, L., Voisin, N., Deems, J.S., Hamlet, A.F.,
Vano, J.A., Mickelson, K.E.B, Lee, S.Y. & Lettenmaier, D.P. 2010.
Implications of 21st century
climate change for the hydrology of Washington State. Climatic Change 102(1-2):
225-260.
Fleischbein, K., Wilcke, W., Valarezo, C., Zech, W. &
Knoblich, K. 2006. Water budgets of three small catchments under montane forest
in ecuador: Experimental and modelling approach. Hydrological Processes 20(12):
2491-2507.
Freer, J.E., McMillan, H., McDonnell, J.J. & Beven, K.J. 2004.
Constraining dynamic TOPMODEL responses for imprecise water table information
using fuzzy rule based performance measures. Journal of Hydrology 291(3-4):
254-277.
Gallant, J. & Hutchinson, M. 1996. Towards an understanding of
landscape scale and structur. In Proceedings,
Third International Conference/Workshop on Integrating GIS and Environmental
Modelling, Santa Fe, NM. pp. 21-26.
Gallart, F., Llorens, P. & Latron, J. 1994. Studying the role
of old agricultural terraces on runoff generation in a small Mediterranean
mountainous basin. Journal of Hydrology 159: 291-303.
Gumindoga, W., Rwasoka, D.T. & Murwira, A. 2011. Simulation of
streamflow using TOPMODEL in the upper save river catchment of Zimbabwe. Physics and Chemistry of the Earth 36:
806-813.
Güntner, A., Uhlenbrook, S., Seibert, J. & Leibundgut, C.
1999. Multi-criterial validation of TOPMODEL in a mountainous catchment. Hydrological Processes 13(11):
1603-1620.
Huang, B. & Jiang, B. 2002. AVTOP: A full integration of
TOPMODEL into GIS. Environmental Modeling
and Software 17(3): 261-268.
Huang, J.C., Lee, T.Y. & Kao, S.J. 2009. Simulating
typhoon-induced storm hydrographs in subtropical mountainous watershed: An
integrated 3-layer TOPMODEL. Hydrology
and Earth System Sciences 13: 27-40.
Ismail, W.R. 2000. The hydrology and sediment yield of the Sungai
Air Terjun catchment, Penang Hill, Malaysia. Journal of Hydrological Sciences 45(6): 897-910.
Izham, M.Y., M. Uznir, U., Alias, A.R., Ayob, K., W. Ruslan, I.
2011. Influence of geo-reference for saturated excess overland flow modeling
using 3D volumetric soft geo-objects. Computers
& Geosciences 37(4): 598-609.
Janssen, P.H.M. & Heuberger, P.S.C. 1995. Calibration of
process-oriented models. Ecol. Model.
83(1-2): 55-66.
Jing Xu, Liliang Ren, Fei Yuan & Xiaofan Liu. 2012. The
solution to DEM resolution effects and parameter inconsistency by using
scale-invariant TOPMODEL. Hydrology
Research 43(1-2): 146-155.
Kavetski, D., Kuczera, G. & Franks, S.W. 2003. Semidistributed
hydrological modeling: A ‘saturation path’ perspective on TOPMODEL and VIC. Water Resour. Res. 39 art.no. 1246.
Kinner, D.A. & Stallard, R.F. 2004. Identifying storm flow
paths in a rainforest catchment using hydrological and geochemical modelling. Hydrological Processes 18: 2861-2875.
Kwanyuen, B. & Pooworakulchai, C. 2003. Comparison of HEC-HMS
model and Topmodel for runoff prediction in Lampachi Basin. Kamphaengsaen Acad. J. 1: 49-55.
Lee, Giha & Kim,
Joo-Cheol. 2011. Comparative analysis of geomorphologic characteristics of
DEM-based drainage networks. Journal of
Hydrologic Engineering 16(2): 137-147.
Lin, Kairong, Qiang
Zhang & Xiaohong Chen. 2010. An evaluation of impacts of DEM resolution and
parameter correlation on TOPMODEL modeling uncertainty. Journal of Hydrology 394(3-4): 370-383.
LPDAAC. 2001. ASTER
Digital Elevation Model (DEM) Product Description,
http://asterweb.jpl.nasa.gov/ content/03_ data/01_Data_Products/DEM.
Molicova, H.,
Grimalidi, M., Bonell, M. & Hubert, P. 1997. Using TOPMODEL towards
identifying and modelling the hydrological patterns within a headwater, humid
tropical catchment. Hydrological
Processes 11: 1169-1196.
Moore, I.D., Lewis, A.
& Gallant, J.C. 1993. Terrain attributes: Estimation methods and scale
effects. In Modelling Change in
Environmental Systems, edited by Jakeman, A.J., Beck, M.B. & McAleer,
M.J. New York: John Wiley and Sons Ltd. pp. 189-214.
Nash, J.E. &
Sutcliffe, J.V. 1970. River flow forecasting through conceptual models. Part I:
A discussion of principles. Journal of
Hydrology 10: 282-290.
O’Connell, P.E. 1991.
A historical perspective. In Proc. NATO
Advanced Institute on Recent Advances in the Modeling of Hydrologic Systems (Sintra, Portugal, 10-23 July 1988), edited by Bowles, D.S. & O’Connell,
P.E. The Netherlands: Kluwer, Dordrecht.
Pradhan, N.R., Ogden,
F.L., Tachikawa, Y. & Takara, K. 2008. Scaling of slope, upslope area, and
soil water deficit: Implications for transferability and regionalization in
topographic index modeling. Water
Resources Research 44(12): DOI: 10.1029/2007WR006667.
Qin, X., Ahn, S.,
Speed, T.P. & Rubin, G.M. 2007. Global analyses of mRNA translational
control during early Drosophila embryogenesis. Genome Biol. 8, R63.
Quinn, P.F., Mewett,
C.T.M. & Dayawansa, N.D.K. 2008. TOPCAT-NP: A minimum information
requirement model for simulation of flow and nutrient transport from
agricultural systems. Hydrological
Processes 22: 2565-2580.
Quinn, P., Cummins,
M., Kase, J., Martin, E. & Weissman, S. 1996. Development of categorical
representations for above and below spatial relations in 3- to 7-month old
infants. Developmental Psychology 32(5): 942-950.
Quinn, P.F., Beven,
K.J. & Lamb, R. 1995. The Ln(a/TanB) Index: How to calculate it and how to
use it within the Topmodel framework. Hydrological
Processes 9: 161-182.
Quinn, P.F., Beven,
K.J., Chevallier, P. & Planchon, O. 1991. The prediction of hillslope flow
paths for distributed hydrological modelling using digital terrain models. Hydrological Processes 5: 59-79.
Romanowicz, R. 1997. A
MATLAB implementation of TOPMODEL. Hydrological
Processes 11: 1115-1129.
Sigdel, Abinashi.,
Jha, Raghunath, Bhatta, Dhruba, Abou-Shanab, Reda A.I., Sapireddy, Veer
Raghavulu and Byong-Hun Jeon. 2011. Applicability of TOPMODEL in the catchments
of Nepal: Bagmati River Basin. Geosystem
Engineering 14(4): 181-190.
Tallaksen, L.M. 1995.
A review of baseflow recession analysis. Journal
of Hydrology 165: 349-370.
Vithanage, Bihawala
I.C. 2009. Analysis of nutrient dynamics in Roxo catchment using remote sensing
data and numerical modeling. MSc Thesis, ITC, Educational material
(unpublished).
Vongtanaboon, S. &
Chappell, N.A. 2009. Validation and interpretation of spatial soil-water
modelling in the tropical subcatchments of maechaem basin. Paper presented at
the IAHS-AISH Publication 326: 174-180.
Wolock, D.M. &
McCabe, G.J. 2000. Differences in topographic characteristics computed from
100- and 1000 m resolution digital elevation model data. Hydrological Processes 14(6): 987-1002.
Wolock, D.M. &
Price, C.V. 1994. Effects of digital elevation model map scale and data
resolution on a topography based watershed model. Water Resour. Res. 30(11): 3041-3052.
Zhang, W. &
Montgomery, D.R. 1994. Digital elevation model grid size, landscape
representation, and hydrologic simulations. Water
Resour. Res. 30: 1019-1028.
Zhang, X., Drake,
N.A., Wainwright, J. & Mulligan, M. 1999. Comparison of slope estimates
from low resolution DEMs: Scaling issues and a fractal method for their
solution. Earth Surface Processes and
Landforms 24: 763-779.
*Pengarang
untuk surat menyurat; email: wateraliwater@gmail.com
|