Sains Malaysiana 43(9)(2014): 1397–1403

 

Water Hyacinth Bioremediation for Ceramic Industry Wastewater Treatment-Application

of Rhizofiltration System

(Biopemulihan Keladi Bunting untuk Industri Air Sisa Seramik Aplikasi Perawatan Sistem Rizoturasan)

 

SITI HANNA ELIAS1, MAKETAB MOHAMED2, AZNAH NOR-ANUAR2, KHALIDA MUDA2, MOHD ARIF HAKIMI MAT HASSAN1, MOHD. NOR OTHMAN2 & SHREESHIVADASAN CHELLIAPAN3

 

1Department of Environmental Engineering, Faculty of Civil Engineering

Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia

 

2Institute of Environment and Water Resource Management (IPASA)

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

 

3UTM Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur, Malaysia

 

Diserahkan: 28 Jun 2013/Diterima: 31 Januari 2014

 

ABSTRACT

In the present study, capability of water hyacinth in removing heavy metals such as Cadmium (Cd), Chromium (Cr), Copper (Cu), Zinc (Zn), Iron (Fe), and Boron (B) in ceramic wastewater was investigated. The metal removal efficiency was identified by evaluating the translocation of metals in roots, leaves and shoot of water hyacinth. The heavy metal removal efficiency followed the order Fe>Zn>Cd>Cu>Cr>B during the treatment process. Water hyacinth had luxury consumption of those 6 elements. This study used the circulation system with 3 columns of plants which functioned as bioremediation of the sample. The concentration of metals in roots is much higher 10 times than leaves and stems. Roots give the result of metalR>metalL. The removal concentration from water hyacinth was estimated under pH of 8.21 to 8.49. This study proves water hyacinth to be a best plant for phytoremediation process.

 

Keywords: Ceramic wastewater; heavy metal removal; rhizofiltration; water hyacinth

 

ABSTRAK

Dalam kajian ini, keupayaan keladi bunting dalam mengeluarkan logam berat seperti Kadmium (Cd), Kromium (Cr), Copper (Cu), zink (Zn), mangan (Mn), besi (Fe) dan Boron (B) dalam air sisa seramik telah dikaji. Kecekapan penyingkiran logam telah dikenal pasti dengan menilai translokasi logam dalam akar, daun dan pucuk keladi bunting. Kecekapan penyingkiran logam berat diikuti dengan susunan Fe>Zn>Cd>Cu>Cr>B semasa proses rawatan. Keladi bunting mempunyai penyerapan terbesar terhadap 6 elemen ini. Kajian ini menggunakan sistem peredaran dengan 3 bahagian tumbuh-tumbuhan yang berfungsi sebagai biopemulihan sampel. Kepekatan logam dalam akar adalah lebih tinggi 10 kali ganda daripada daun dan batang. Akar memberikan hasil metalR>metalL. Kepekatan penyingkiran logam daripada keladi bunting dianggarkan di bawah pH8,21-8,49. Kajian ini membuktikan air gondok menjadi komponen terbaik untuk proses fitopemulihan.

 

Kata kunci: Air sisa seramik; keladi bunting; penyingkiran logam berat; rizoturasan

RUJUKAN

Asheesh, K.Y., Rouzbeh, A., Naresh, K., Santosh, S., Sreekrishnan, T.R. & Mishra, B.K. 2012. The removal of heavy metals in wetland microcosms: Effects of bed depth, plant species, and metal mobility. Chemical Engineering Journal 211-212: 501-507.

Barros, M.C., Bello, P., Roca, E. & Casares, J.J. 2007. Integrated pollution prevention and control for heavy ceramic industry in Galicia (NW Spain). Journal of Hazardous Materials 141: 680-692.

Chong, M.F., Lee, K.P., Chieng, H.J. & Ramli, I.S. 2009. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer. Water Research Journal 43: 3326-3334.

Garcia, C.M., Quesada, D.E., Villarejo, L.P., Godino, F.J.I. & Iglesias, F.A.C. 2011. Sludge valorization from wastewater treatment plant to its application on the ceramic industry. Journal of Environmental Management 95: 343-348.

Hammad, D.M. 2011. Cu, Ni and Zn phytoremediation and translocation by water hyacinth plant at different aquatic environments Australian. Journal of Basic and Applied Sciences 5-11: 11-22.

Henderson, L. 2001. Alien Weeds and Invasive Plants. Plant Protection Research Institute Handbook No. 12. Agricultural Research Council, Pretoria. pp. 1-300.

Karia, G.L. & Christian, R.A. 2006. Wastewater Treatment Concepts and Design Approach. Eastern Economy Edition of India. New Delhi: Prentice Hall.

Keith, C., Borazjani, H., Dieh, S.V., Su, Y. & Baldwin, B.S. 2006. Removal of copper, chromium, and arsenic by water hyacinths. 36th Annual Mississippi Water Resources Conference, Mississippi State University.

Lee, M.H. & Yang, M.J. 2010. Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. Journal of Hazardous Materials 173: 589-596.

Mishra, V.K. & Tripathi, B.D. 2009. Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). Journal of Hazard Mater. 164: 1059-1063.

Mufarrege, M.M., Hadad, H.R. & Maine, M.A. 2010. Response of pistiastratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous. Arch Environ ContamToxicol. 58: 53-61.

Narendranathan, N. 2004. Leachates in Landfills Notes. Workshop on New Technologies for Cost Effective Landfill Management, Kuala Lumpur.

Nedelkoska, T.J. & Doran, P.M. 2000. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnol. Bioengineering 67: 607- 615.

Penfound, W. & Earle, T. 1948. Biology of water hyacinth. Ecol. Monogr. 18: 447-472.

Prabir, G., Amar, N.S. & Subhabrata, R. 2010. Reduction of COD and removal of Zn2+from rayon industry wastewater by combinedelectro-Fenton treatment and chemical precipitation. Desalination 266: 1-3.

Saunders, P. 2013. Purple root water hyacinth - A natural remedy for pollution. Biological cleaning, potable water, waste water, water conservation, water contaminaton & loss, ISIS. Permaculture Forums, Courses, Information & News. September 2013.

Stout, L. & Nusslein, K. 2010. Biotechnological potential of aquatic plant-microbe interactions. Current Opinion in Environmental Biotechnology 21: 339-345.

Weiner, R.W. 2012. Applications of Environmental Aquatic Chemistry: A Practical Guide. 3ed ed. New York: CRC Press. p. 496.

Yadav, B.K., Siebel, M.A. & Bruggen, J.J.A. 2011. Rhizofiltration of a heavy metal (lead) containing wastewater using the Wetland plant carexpendula. Clean - Soil, Air, Water. 39: 467-474.

Zanxin, W. & Margaret, M.C. 2012. Environmental and economic analysis of application of water hyacinth foreutrophic water treatment coupled with biogas production. Journal of Environmental Management 110: 246-253.

Zimmels, Y., Kirzhner, F. & Malkovskaja, A. 2006. Application of Eichhorniacrassipes and Pistiastratiotes for treatment of urban sewage in Israel. Journal of Environmental Management 81: 420-428.

 

 

*Pengarang untuk surat-menyurat; email: hansz_el@yahoo.com

 

 

 

sebelumnya