Sains Malaysiana 44(10)(2015): 1389–1396
Prediction
of Lead Seven Day Minimum and Maximum Surface Air Temperature using Neural
Network and Genetic Programming
(Peramalan
Awalan Tujuh Hari Minimum dan Suhu Permukaan Udara Maksimum menggunakan
Rangkaian Neuron dan Pengaturcaraan Genetik)
K. RAMESH1*, R. ANITHA2 & P. RAMALAKSHMI1
1Department of Computer
Applications, Regional Centre, Anna University, Tirunelveli,
Tamil Nadu 627007, India
2Muthayammal Engineering
College, Rasipuram, Namakkal District, Tamil Nadu
India
Diserahkan: 15 Oktober
2013/Diterima: 4 Ogos 2015
ABSTRACT
The determination of variance of surface
air temperature is very essential since it has a direct impact on
vegetation, environment and human livelihood. Forecast of surface
air temperature is difficult because of the complex physical phenomenon
and the random-like behavior of atmospheric system which influences
the temperature event on the earth surface. In this study, forecast
models based on artificial neural network (ANN) and genetic programming (GP)
approaches were proposed to predict lead seven days minimum and
maximum surface air temperature using the weather parameters observed
at the station Chennai, India. The outcome of this study stated
that models formulated using ANN
approach are more accurate than genetic programming
for all seven days with the highest coefficient of determination
(R2), least mean absolute error
(MAE),
root mean square error (RMSE) and mean absolute percentage error
(MAPE) on deployment with independent test dataset. ANN
models give statistically acceptable mean absolute
error of 0.59oC for
lead day one in minimum temperature forecast and 0.86oC variance
for lead day one in maximum temperature forecast. The study also
clarified that the level of accuracy of the proposed prediction
models were found to be better for smaller lead days when compared
with higher lead days with both approaches.
Keywords: ANN; GP;
surface temperature; temperature forecast
ABSTRAK
Penentuan perbezaan suhu permukaan
udara adalah sangat penting kerana ia
mempunyai kesan langsung pada tumbuh-tumbuhan, alam sekitar dan
kehidupan manusia. Ramalan suhu permukaan udara adalah sukar kerana fenomena fizikal
yang kompleks dan perilaku rawak seperti sistem atmosfera yang mempengaruhi
keadaan suhu permukaan bumi. Dalam kajian
ini, peramalan model berdasarkan pendekatan rangkaian neuron tiruan
(ANN)
dan genetik pengaturcaraan (GP) dicadangkan untuk meramalkan
awalan tujuh hari minimum serta suhu permukaan udara maksimum menggunakan
parameter cuaca yang dicerap di Stesen Chennai, India. Hasil
kajian ini menunjukkan bahawa model yang dirumus menggunakan pendekatan
ANN adalah
lebih tepat daripada genetik pengaturcaraan untuk semua tujuh hari
dengan pekali penentuan tertinggi (R2), min ralat mutlak terkecil
(MAE),
punca min ralat kuasa dua (RMSE) dan bermakna min ralat peratusan
mutlak (MAPE) pada pengerahan dengan dataset ujian bebas. Model
ANN
memberikan min ralat mutlak 0.59oC yang boleh diterima secara statistik
untuk awalan satu hari dalam suhu peramalan minimum dan 0.86oC
varians bagi satu hari dalam suhu peramalan maksimum. Kajian
ini juga menjelaskan tahap ketepatan model ramalan yang dicadangkan
adalah lebih baik untuk awalan hari lebih kecil jika dibandingkan
dengan awalan hari lebih besar dengan kedua-dua pendekatan.
Kata
kunci: ANN; GP;
peramalan suhu; suhu permukaan
RUJUKAN
Abdel-Aal,
R.E. 2004. Hourly temperature forecasting using abductive networks Engineering. Applications
of Artificial Intelligence 17: 543-556.
ASCE
Task Committee on Application of Artificial Neural Networks in Hydrology. 2000a. Artificial neural networks in hydrology-I: Preliminary
concepts. Journal of Hydrologic Engineering 5(2): 115-123.
ASCE
Task Committee on Application of Artificial Neural Networks in Hydrology. 2000b. Artificial neural networks in hydrology-II: Hydrologic
applications. Journal of Hydrologic Engineering 5(2): 124-137.
Benghanem,
M. & Mellit, A. 2010. Radial basis function network-based prediction
of global solar radiation data: Application for sizing of a stand-alone
photovoltaic system Al-Madinah, Saudi Arabia. Energy 35: 3751-3762.
De, S.S., Chattopadhyay,
G., Bandyopadhyay, B. & Paul, S. 2011. A neurocomputing
approach to the forecasting of monthly maximum temperature over Kolkata, India
using total ozone concentration as predictor. Comptes Rendus
Geoscience 343: 664-676.
Fabbian, D., De Dear, R.
& Lellyett, S. 2007. Application of artificial neural network forecasts to
predict fog at Canberra International Airport. Weather Forecast 22:
372-381.
Hsu, K., Gupta, H.V.
& Sorooshian, S. 1995. Artificial neural network modeling
of the rainfall-runoff process. Water Resources Research 31:
2517-2530.
Hung, N.Q., Babel, M.S.,
Weesakul, S. & Tripathi, N.K. 2009. An artificial neural
network model for rainfall forecasting in Bangkok, Thailand. Hydrology
and Earth System Science 13: 1413-1425.
India
Meteorology Department-Pune. 2008. Forecasts’ Guide.
Kashid, S.S., Subimal
Ghosh & Rajib Maity. 2010. Streamflow prediction using multi-site rainfall
obtained from hydroclimatic teleconnection. Journal of Hydrology 395:
23-38.
Koza, J.R. 1994. Genetic
Programming II: Automatic Discovery of Reusable Programs. Cambridge, MA:
MIT Press.
Koza, J.R. 1992. Genetic
Programming: On the Programming of Computers by Means of Natural Selection.
Cambridge, MA: MIT Press.
Landeras,
G., Lopez, J.J., Kisi, O. & Shiri, J. 2012. Comparison of gene
expression programming with neuro-fuzzy and neural network computing techniques
in estimating daily incoming solar radiation in the Basque Country (Northern
Spain). Energy Conversion and Management 62: 1-13.
Maier, H.R. & Dandy,
G.C. 1996. The use of artificial neural networks for the
prediction of water quality parameters. Water Resources Research 32(4):
1013-1022.
Nasseri,
M., Moeini, A. & Tabesh, M. 2011. Forecasting monthly urban water demand using
extended Kalman filter and genetic programming. Expert Systems with
Applications 38: 7387-7395.
Nayak, P.C., Sudheer,
K.P. & Jain, S.K. 2007. Rainfall-runoff modeling through
hybrid intelligent system. Water Resources Research 43: W07415.
Nayak, P.C., Satyaji
Rao, Y.R. & Sudheer, K.P. 2006. Groundwater level
forecasting in a shallow aquifer using artificial neural network approach. Water Resources Management 20: 77-90.
Ortiz-Garcia, E.G.,
Salcedo-Sanz, S., Casanova-Mateo, C., Paniagua-Tineo, A. &
Portilla-Figueras, J.A. 2012. Accurate local very short-term temperature
prediction based on synoptic situation Support Vector Regression banks. Atmospheric
Research 107: 1-8.
Paniagua-Tineo,
A., Salcedo-Sanz, S., Casanova-Mateo, C., Ortiz-Garcia, E.G., Cony, M.A. &
Hernandez-Martin, E. 2011. Prediction of daily maximum
temperature using a support vector regression Algorithm. Renewable
Energy 36: 3054 -3060.
Roebber, P.J., Butt,
M.R. & Reinke, S.J. 2007. Real-time forecasting of
snowfall using a neural network. Weather Forecast 20: 676-684.
Ruano, A.E., Crispim,
E.M., Conceicao, E.Z.E. & Lucio, M.M.J.R. 2006. Prediction of building’s
temperature using neural networks models. Energy and Buildings 38:
682-694.
Rumelhart, D.E., Hinton,
G.E. & Williams, R.J. 1986. Learning Internal Representations by Error
Propagation. Parallel distributed processing: Explorations in the
microstructure of cognition 1: 318-362.
Shiri,
J., Kisi, O., Landeras, G., Lopez, J.J., Nazemi, A.H. & Stuyt, L. 2012. Daily
reference evapotranspiration modeling by using genetic programming approach in
the Basque Country (Northern Spain). Journal of Hydrology 414:
302-316.
Smith,
B.A., Hoogenboom, G. & McClendon, R.W. 2009. Artificial neural
networks for automated year-round temperature prediction. Computers and
Electronics in Agriculture 68: 52-61.
Stanislawska, K.,
Krawiec, K. & Kundzewicz, Z.W. 2012. Modeling global temperature changes
with genetic programming. Computers and Mathematics with Applications 64:
3717-3728.
*Pengarang untuk surat menyurat; email:
rameshk7n@yahoo.co.in
|