Sains Malaysiana 44(2)(2015): 175–186
PM10 Analysis for Three Industrialized Areas using Extreme Value
(Analisis PM10 bagi Tiga Kawasan Industri
menggunakan Nilai
Melampau)
HASFAZILAH AHMAT1,2*, AHMAD SHUKRI YAHAYA1 & NOR AZAM RAMLI1
1Clean Air Research Group, School
of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Pulau Pinang, Malaysia
2Hasfazilah Ahmat*
Faculty
of Computer and Mathematical Sciences, Universiti Teknologi MARA
13500 Permatang Pauh, Pulau Pinang, Malaysia
Diserahkan: 26
Mac 2014/Diterima: 3 Ogos 2014
ABSTRACT
One of the concerns
of the air pollution studies is to compute the concentrations of
one or more pollutants' species in space and time in relation to
the independent variables, for instance emissions into the atmosphere,
meteorological factors and parameters. One of the most significant
statistical disciplines developed for the applied sciences and many
other disciplines for the last few decades is the extreme value
theory (EVT).
This study assesses the use of extreme value distributions of the
two-parameter Gumbel, two and three-parameter
Weibull, Generalized Extreme Value (GEV)
and two and three-parameter Generalized Pareto
Distribution (GPD) on the maximum
concentration of daily PM10 data recorded in the year 2010 - 2012
in Pasir Gudang, Johor; Bukit Rambai,
Melaka; and Nilai, Negeri
Sembilan. Parameters for all distributions are estimated using the
Method of Moments (MOM) and Maximum Likelihood
Estimator (MLE).
Six performance indicators namely; the accuracy measures which include
predictive accuracy (PA),
Coefficient of Determination (R2),
Index of Agreement (IA)
and error measures that consist of Root Mean Square Error (RMSE),
Mean Absolute Error (MAE)
and Normalized Absolute Error (NAE)
are used to find the goodness-of-fit of the distribution. The best
distribution is selected based on the highest accuracy measures
and the smallest error measures. The results showed that the GEV is
the best fit for daily maximum concentration for PM10 for all monitoring
stations. The analysis also demonstrates that the estimated numbers
of days in which the concentration of PM10 exceeded the Malaysian
Ambient Air Quality Guidelines (MAAQG) of 150 mg/m3
are between ½ and 1½ days.
Keywords: Air
pollution; extreme value theory (EVT);
PM10; prediction
ABSTRAK
Salah
satu kebimbangan
di dalam kajian pencemaran
udara adalah
untuk menyukat kepekatan satu atau lebih zarah
pencemar di dalam
ruang dan masa berhubung dengan pemboleh ubah bebas,
sebagai contoh
untuk pelepasan ke atmosfera, faktor
dan parameter cuaca. Salah satu disiplin
statistik yang paling penting
untuk sains
gunaan dan pelbagai
bidang lain
untuk beberapa dekad yang lalu adalah teori nilai
melampau (EVT).
Kajian ini
menilai penggunaan taburan nilai melampau dua
parameter Gumbel, dua dan tiga
parameter Weibull, Nilai Ekstrim
Teritlak (GEV)
dan dua
dan tiga
parameter Taburan Pareto Teritlak (GPD)
pada kepekatan
maksimum data harian PM10 yang
dicatatkan dalam
tahun 2010 - 2012 di Pasir
Gudang, Johor; Bukit Rambai,
Melaka dan Nilai,
Negeri Sembilan. Parameter untuk semua taburan
dianggarkan menggunakan
kaedah momen (MOM)
dan Penganggar
Kebolehjadian Maksimum (MLE). Enam petunjuk prestasi
iaitu; pengukuran
kejituan termasuk Ketepatan Peramalan (PA), Pekali
Penentuan (R2),
Indeks Persetujuan
(IA) dan
pengukuran ralat
yang terdiri daripada Ralat Min Punca Kuasa Dua (RMSE),
Min Ralat Mutlak
(MAE) dan
Ralat Mutlak
Ternormal (NAE)
digunakan untuk
mencari kebaikan penyesuaian taburan. Taburan terbaik dipilih berdasarkan pengukuran kejituan tertinggi dan pengukuran ralat yang terkecil.
Hasil kajian menunjukkan bahawa GEV adalah taburan terbaik untuk kepekatan
maksimum harian
bagi PM10 di kesemua stesen
pemantauan. Analisis
juga menunjukkan bahawa anggaran bilangan hari kepekatan
PM10 melebihi Garis
Panduan Kualiti Udara Ambien Malaysia
(MAAQG)
bagi kepekatan harian PM10 iaitu 150 μg/m3
adalah antara
½ dan 1½ hari.
Kata kunci: Nilai melampau (EVT); pencemaran
udara; peramalan teori; PM10
RUJUKAN
Abd-el-hakim, Nagi, S. & Khalaf S
Sultan. 2004. Maximum likelihood estimation from record-breaking data for the
generalized pareto distribution. International Journal of Statistics LXII 3: 377-389.
Afroz,
R., Mohd Nasir Hassan & Noor Akma Ibrahim. 2003. Review of air pollution and health impacts in
Malaysia. Environmental Research 92(6): 71-77.
Bermudez,
P. de Zea & Kotz,
S. 2010. Parameter estimation of the generalized pareto distribution-Part II. Journal of Statistical
Planning and Inference 140(6): 1374-1388.
Bury,
K. 1999. Statistical Distributions in Engineering. London: Cambridge University Press.
Chapman,
S. 2004. MATLAB Programming for Engineers. 3rd
ed. Australia: Thomson.
Coles,
S. 2001. An Introduction to Statistical Modeling of
Extreme Values. Bristol: Springer series in statistics.
Dasgupta,
R. & Bhaumik, D.K. 1995. Upper and lower tolerance limits of atmospheric ozone level and extreme value
distribution. Sankhya: The Indian Journal
of Statistics 57(B2): 182-199.
Horowitz,
J. & Barakat, S. 1979. Statistical analysis of
the maximum concentration of an air pollutant: Effects of autocorrelation and
non-stationarity. Atmospheric Environment (1967) 13(6):
811-818.
Jamal,
H.H., Pillay, M.S., Zailina,
H., Shamsul, B.S., Sinha, K., Zaman Huri, Z., Khew, S.L., Mazrura, S., Ambu, S., Rahimah, A. & Ruzita, M.S.
2004. A Study of Health Impact & Risk Assessment of
Urban Air Pollution in Klang Valley, Malaysia. Kuala Lumpur: UKM Pakarunding Sdn Bhd.
Junninen,
H., Niska, H., Tuppurainen,
K., Ruuskanen, J. & Kolehmainen,
M. 2004. Methods for imputation of missing
values in air quality data sets. Atmospheric Environment 38(6):
2895-2907.
Kao,
T.C. & Lin, C.H. 2010. Setting margin levels
in futures markets: An extreme value method. Nonlinear Analysis: Real
World Applications 11(6): 1704-1713.
Kotz, S.
& Nadarajah, S. 2000. Extreme-Value
Distributions: Theory and Applications. London: Imperial College Press.
Kuchenhoff,
H. & Thamerus, M. 1996. Extreme value analysis of Munich air pollution data. Environmental
and Ecological Statistics 3: 127-141.
Lee,
Muhammad Hisyam, Nur Haizum Abd. Rahman, Suhartono, Mohd Talib Latif, Maria Elena Nor & Nur Arina Bazilah Kamisan. 2012.
Seasonal ARIMA for forecasting air pollution index: A case study. American
Journal of Applied Sciences 9(4): 570-578.
Lu,
H.C. 2002. The statistical characters of PM10 concentration
in Taiwan area. Atmospheric Environment 36(3): 491-502.
Lu,
H.C. & Fang, G.C. 2003. Predicting the
exceedances of a critical PM10 concentration - A case study in Taiwan. Atmospheric
Environment 37(8): 3491-3499.
Malaysia
Environmental Quality Report 2012. Putrajaya:
Department of Environment Malaysia.
Malaysia
Environmental Quality Report 2011. Putrajaya:
Department of Environment Malaysia.
Malaysia
Environmental Quality Report 2010. Putrajaya:
Department of Environment Malaysia.
Malaysia
Environmental Quality Report 2009. Putrajaya:
Department of Environment Malaysia.
Malaysia
Environmental Quality Report 2008. Putrajaya:
Department of Environment Malaysia.
Malaysia
Environmental Quality Report 2007. Putrajaya:
Department of Environment Malaysia.
Malaysia
Environmental Quality Report 2006. Putrajaya:
Department of Environment Malaysia.
Malaysia
Environmental Quality Report 2005. Putrajaya:
Department of Environment Malaysia.
Malaysia
Environmental Quality Report 2004. Putrajaya:
Department of Environment Malaysia.
Martins,
E.S. & Stedinger, J.R. 2000. Generalized maximum-likelihood generalized extreme-value quantile estimators
for hydrologic data. Water Resources Research 36(3): 737-744.
Mohamed
Noor, Norazian, Cheng Yau Tan, Mohd Mustafa Al- Bakri Abdullah, Nor Azam Ramli & Ahmad Shukri Yahaya.
2011. Modelling of PM10 concentration in industrialized area in Malaysia : A case study in Nilai. In 2011 International Conference on Environment and Industrial
Innovation, 13: 18-22. Singapore: IACSIT Press.
Oztekin, T.
2005. Comparison of parameter estimation methods for the three-parameter
generalized pareto distribution. Turk. J. Agric. For. 29:
419-428.
Petrov,
V., Guedes Soares, C. & Gotovac, H. 2013. Prediction of extreme significant wave heights using maximum
entropy. Coastal Engineering 74(4): 1-10.
Quintela-del-Río,
A. & Francisco-Fernández, M. 2011. Analysis of high level ozone concentrations using nonparametric
methods. The Science of the Total Environment 409(2): 1123-1133.
Reeve,
D.T., Randell, D., Ewans,
K.C. & Jonathan, P. 2012. Uncertainty due to choice of
measurement scale in extreme value modelling of North Sea storm severity. Ocean Engineering 53(10): 164–176.
Reyes,
H.J., Vaquera, H. & Villasenor, J.A. 2010. Estimation of trends in high urban ozone levels using the quantiles of (GEV). Environmetrics 21: 470-481.
Reynolds,
A.M. 2012. Gusts within plant canopies are extreme value processes. Physica A: Statistical Mechanics and Its
Applications 391(11): 5059-5063.
Rinne, H.
2008. The Weibull Distribution: A Handbook. Florida: CRC Press.
Roberts,
E.M. 1979. Review of statistics of extreme values with applications to air
quality data Part I . Review. Journal of the Air Pollution Control Association 29(6): 632-637.
Singh,
V.P. & Guo, H. 1995. Parameter estimation for 3-parameter generalized pareto distribution by the principle of maximum
entropy (POME). Hydrological Sciences 40(2): 165-181.
Smith,
R.L. 1989. Extreme value analysis of environmental time series: An application
to trend detection in ground-level ozone. Statistical Sciences 4(4):
367-393.
Su,
F.C., Jia, C. & Batterman,
S. 2012. Extreme value analyses of VOC exposures and risks: A comparison of
RIOPA and NHANES datasets. Atmospheric Environment 62(12): 97- 106.
Surman,
P.G., Bodero, J. & Simpson, R.W. 1987. The prediction of the numbers of violations of standards and the
frequency of air pollution episodes using extreme value theory. Atmospheric
Environment 21(8): 1843-1848.
Talib, M.L., Rozali, M.O., Norela, S., Ahmad Daud, M.N. & Permata, N.J.
2002. Air quality in several industrial areas in Malaysia. In Proceedings of the Regional Symposium on Environment and Natural
Resources, edited by Omar, R., Ali Rahman, Z., Latif,
M.T., Lihan, T. & Adam, J.H.
April 10-11. Renaissance Hotel, Kuala Lumpur. pp.
703-710.
Torrielli, A., Repetto, M.P. & Solari, G. 2013. Extreme wind speeds from long-term synthetic records. Journal of Wind Engineering
and Industrial Aerodynamics 115(4): 22-38.
Tsai,
M.S. & Chen, L.C. 2011. The
calculation of capital requirement using extreme value theory. Economic
Modelling 28(1): 390-395.
Yahaya,
Ahmad Shukri & Nor Azam Ramli. 2008. Modelling of
carbon monoxide concentration in major towns in Malaysia: A case study in
Penang, Kuching and Kuala Lumpur. USM Short Term Grant. Penang: Universiti Sains Malaysia.
Yao,
F., Wen, H. & Luan, J. 2013. CVaR measurement and operational risk management in
commercial banks according to the peak value method of extreme value theory. Mathematical
and Computer Modelling 58(1-2): 15-27.
Yap,
X.Q. & Hashim, M. 2013. A robust calibration approach for PM10 prediction from MODIS
aerosol optical depth. Atmospheric Chemistry and Physics 13(3):
3517-3526.
*Pengarang untuk surat-menyurat;
email: hasfazilah.ahmat@gmail.com
|