Sains Malaysiana 44(3)(2015): 387–397
Monthly
Variability of Chlorophyll-α Concentration in Persian Gulf Using Remote
Sensing Techniques
(Kevariabelan Bulanan Kepekatan Klorofil-α di Teluk Parsi Menggunakan
Teknik Penderiaan Jarak Jauh)
MOSLEM SHARIFINIA1*, MOHAMMADREZA MOHAMMADPOUR PENCHAH2,
ABBAS MAHMOUDIFARD3, ABOLHASAN GHEIBI4 & ROHALLAH ZARE4
1Young Researchers and Elite
Club, Rasht Branch, Islamic Azad University, Rasht, Iran
2Young Researchers and Elite
Club, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
3Faculty of Natural
Resources, University of Guilan, P.O. Box: 1144, Sowmehsara, Iran
4Faculty of Science,
Hormozgan University, P.O. Box: 3995, Bandar Abbas, Iran
Diserahkan: 13 Ogos 2014/Diterima: 19 Oktober 2014
ABSTRACT
During the last two decades, large-scale high biomass algal blooms
of the dinoflagellate Cochlodinium have occurred frequently. Prior to
1990, blooms had been primarily reported in Southeast Asia. Since
then, time blooms have expanded across Asia, Europe and North American.
A multi-spectral classification and quantification technique is
developed for estimating chlorophyll-α concentrations. In this
study, we explored the use of Sea-viewing Wide Field of-view Sensor
(SeaWiFS) satellite data in studying the spatio-temporal changes
in chlorophyll-α concentration in Persian Gulf. In addition,
the present study focuses on the temperature, dissolved oxygen,
salinity, pH and nutrient concentrations during the red tide phenomenon.
The resultant chlorophyll-α concentration images derived from
SeaWiFS satellite data give an indication of the monthly spatial
variation in chlorophyll-α concentration from 2008 to 2009.
Variability of chlorophyll-α plot from September 2008 to May
2009 in Persian Gulf showed that September 2008 had the lowest value
(1.57±0.14 mg m-3) than other years except
May 2009, then tended to increase up to January 2009 (Highest value:
7.47±1.67mg m-3),
then a slow decrease up to May 2009. The result showed all water
physicochemical parameters measurement in-situ (DO and pH)
and ex-situ (NO3
and PO4),
were varied among the different months. The highest and lowest values
of these parameters were recorded in September 2008 and May 2009,
respectively. After occurrence of the red tide, nutrient concentration
(NO3 and PO4), dissolved oxygen and
pH were reduce compared to before this phenomenon. Compare mean
between various months' showed significant differences for temperature
records among the months of study (p≤0.05). Lowest and highest
temperature recorded were in February 2009 and September 2008, respectively,
but no significant differences were found in salinity (p≥0.05).
This study showed that SeaWiFS satellite data provide useful information
on the spatio-temporal variations in Persian Gulf, which is useful
in establishing general trends that are more difficult to determine
through routine ground measurements.
Keywords: Bloom; chlorophyll-α; fish mortality; Persian Gulf;
SeaWiFS
ABSTRAK
Sepanjang dua dekad yang lalu, ledakan alga biojisim berskala dinoflagellate
Cochlodinium
telah berlaku dengan kerap. Sebelum tahun 1990, ledakan selalunya
dilaporkan di Asia Tenggara. Sejak itu, masa ledakan telah merebak
ke seluruh Asia, Eropah dan Amerika utara. Pengelasan pelbagai tatacara
dan teknik mengkuantifikasi dibangunkan untuk menganggar kepekatan
klorofil-α. Dalam kajian ini, kami mengkaji penggunaan sensor
pandangan laut bidang luas pandangan (SeaWiFS) data satelit dalam
mengkaji perubahan spatio-temporal dalam kepekatan klorofil-α
di Teluk Parsi. Di samping itu, kajian ini tertumpu kepada suhu,
oksigen terlarut, kemasinan, kepekatan pH dan nutrien semasa fenomena
pasang-surut merah. Kepekatan klorofil-α imej terhasil yang
diperoleh daripada SeaWiFS data satelit memberi petunjuk variasi
bulanan reruang dalam kepekatan klorofil-α dari 2008 ke 2009.
Kebolehubahan plot klorofil-α dari September 2008 hingga Mei
2009 di Teluk Parsi menunjukkan bulan September 2008 mempunyai nilai
terendah (1.57±0.14 mg m-3) berbanding tahun lain
kecuali Mei 2009 yang kemudian terus meningkat sehingga Januari
2009 (nilai tertinggi 7.47±1.67 mg m-3), selepas itu penurunan perlahan sehingga
ke Mei 2009. Hasil kajian menunjukkan semua pengukuran parameter
fizikokimia air in-situ (DO dan pH) dan ex-situ (NO3 dan PO4) adalah berbeza-beza antara
bulan. Nilai parameter tertinggi dan terendah ini direkodkan masing-masing
pada bulan September 2008 dan Mei 2009. Selepas kejadian pasang-surut
merah, nutrien kepekatan (NO3 dan PO4), oksigen terlarut dan pH berkurangan berbanding
sebelum fenomena ini. Min bandingan antara bulan menunjukkan perbezaan
yang signifikan untuk rekod suhu antara bulan kajian (p≤0.05).
Suhu terendah dan tertinggi masing-masing direkod pada Februari
2009 dan September 2008, tetapi tiada perbezaan yang bererti untuk
kemasinan (p≥0.05). Kajian ini menunjukkan data satelit SeaWiFS
memberikan maklumat berguna tentang variasi spatio-temporal di Teluk
Parsi dalam mewujudkan trend umum yang lebih sukar untuk ditentukan
melalui pengukuran tanah rutin.
Kata kunci: Kematian ikan;
klorofil-α; ledakan; SeaWiFS; Teluk Parsi
RUJUKAN
Banse, K. 1997. Irregular flow of Persian (Arabian)
Gulf water to the Arabian sea. Journal of Marine Research 55: 1049-1067.
Binding, C., Greenberg, T. & Bukata, R.
2012. An analysis of MODIS-derived algal and mineral turbidity in Lake Erie. Journal
of Great Lakes Research 38: 107-116.
Cannizzaro, J.P. & Carder, K.L. 2006.
Estimating chlorophyll-α concentrations from remote-sensing reflectance in
optically shallow waters. Remote Sensing of Environment 101: 13-24.
Dall’Olmo, G., Gitelson, A.A., Rundquist, D.C.,
Leavitt, B., Barrow, T. & Holz, J.C. 2005. Assessing the potential of
SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive
waters using red and near-infrared bands. Remote Sensing of Environment 96:
176-187.
Ekstrand, S. 1992. Landsat TM based
quantification of chlorophyll-α during algae blooms in coastal waters. International
Journal of Remote Sensing 13: 1913-1926.
Emery, K.O. 1956. Sediments and water of Persian
Gulf. AAPG Bulletin 40: 2354-2383.
Fatemi, S., Nabavi, S., Vosoghi, G., Fallahi, M.
& Mohammadi, M. 2012. The relation between environmental parameters of
Hormuzgan coastline in Persian Gulf and occurrence of the first harmful algal
bloom of Cochlodinium polykrikoides (Gymnodiniaceae). Iranian Journal
of Fisheries Sciences 11: 475-489.
Fisheries Statistical Yearbook, I.W. 2009.
Fisheries Administration, Council of Agriculture, Executive Tehran. 113.
Gannon, D.P., McCabe, E.B., Camilleri, S.A.,
Gannon, J.G., Brueggen, M.K., Barleycorn, A.A., Palubok, V.I., Kirkpatrick,
G.J. & Wells, R.S. 2009. Effects of Karenia brevis harmful algal blooms on
nearshore fish communities in southwest Florida. Mar. Ecol. Prog. Ser. 378:
171-186.
Gitelson, A.A., Gurlin, D., Moses, W.J. &
Barrow, T. 2009. A bio-optical algorithm for the remote estimation of the
chlorophyll-a concentration in case 2 waters. Environmental Research Letters 4: 045003.
Glibert, P. & Burkholder, J. 2006. The
complex relationships between increases in fertilization of the earth, coastal
eutrophication and proliferation of harmful algal blooms. Ecology of Harmful
Algae 189: 341-354.
Glibert, P.M., Anderson, D.M., Gentien, P.,
Graneli, E. & Sellner, K.G. 2005. The global, complex phenomena of harmful
algal blooms. Oceanography 18(2): 136-147.
Gobler, C.J., Berry, D.L., Anderson, O.R.,
Burson, A., Koch, F., Rodgers, B.S., Moore, L.K., Goleski, J.A., Allam, B.
& Bowser, P. 2008. Characterization, dynamics, and ecological impacts of
harmful Cochlodinium polykrikoides blooms on eastern Long Island, NY,
USA. Harmful Algae 7: 293-307.
Gordoa, A., Illas, X., Cruzado, A. &
Velásques, Z. 2008. Spatio-temporal patterns in the north-western Mediterranean
from MERIS derived chlorophyll-α concentration. Scientia Marina 72:
757-767.
Guinehut, S., Dhomps, A.L.,
Larnicol, G. & Le Traon, P.Y. 2012 High resolution 3-D temperature and
salinity fields derived from in-situ and satellite observations. Ocean
Science 8: 845-857.
Iwataki, M., Kawami,
H., Mizushima, K., Mikulski, C.M., Doucette, G.J., Relox Jr, J.R., Anton, A.,
Fukuyo, Y. & Matsuoka, K. 2008. Phylogenetic relationships in the harmful
dinoflagellate Cochlodinium polykrikoides (Gymnodiniales, Dinophyceae)
inferred from LSU rDNA sequences. Harmful Algae 7: 271-277.
John, V.C. 1992. Harmonic tidal current constituents of the
western Arabian Gulf from moored current measurements. Coastal Engineering 17:
145-151.
Kim, D.I., Matsuyama, Y., Nagasoe, S., Yamaguchi, M., Yoon,
Y.H., Oshima, Y., Imada, N. & Honjo, T. 2004. Effects of temperature,
salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium
polykrikoides Margalef (Dinophyceae). Journal of Plankton Research 26:
61-66.
Kudela, R.M. & Gobler, C.J. 2012. Harmful dinoflagellate
blooms caused by Cochlodinium sp.: Global expansion and ecological
strategies facilitating bloom formation. Harmful Algae 14: 71-86.
Kuwae, T., Kamio, K., Inoue, T., Miyoshi, E. & Uchiyama,
Y. 2006. Oxygen exchange flux between sediment and water in an intertidal
sandflat, measured in-situ by the eddy-correlation method. Marine Ecology
Progress Series 307: 59-68.
Larnicol, G., Guinehut, S., Rio, M., Drevillon, M., Faugere,
Y. & Nicolas, G. 2006. The Global Observed Ocean Products of the French
Mercator Project. https://earth.esa.int.
Lee, Y.S. & Lee, S.Y. 2006. Factors affecting outbreaks
of Cochlodinium polykrikoides blooms in coastal areas of Korea. Marine
Pollution Bulletin 52: 626-634.
Lloyd, D.S. 1987. Turbidity as a water quality standard for
salmonid habitats in Alaska. North American Journal of Fisheries Management 7:
34-45.
Longhurst, A., Sathyendranath, S., Platt, T. &
Caverhill, C. 1995. An estimate of global primary production in the ocean from
satellite radiometer data. Journal of Plankton Research 17: 1245-1271.
Marcella, M.P. & Eltahir, E.A. 2008. The hydroclimatology
of Kuwait: Explaining the variability of rainfall at seasonal and interannual
time scales. Journal of Hydrometeorology 9(5): .
Matsuoka, K., Mizuno, A., Iwataki, M., Takano, Y., Yamatogi,
T., Yoon, Y.H. & Lee, J.B. 2010. Seed populations of a harmful unarmored
dinoflagellate Cochlodinium polykrikoides Margalef in the East China
Sea. Harmful Algae 9: 548-556.
Michael Reynolds, R. 1993. Physical oceanography of the
Gulf, Strait of Hormuz, and the Gulf of Oman-Results from the Mt Mitchell expedition. Marine Pollution Bulletin 27: 35-59.
Morse, R.E., Shen, J., Blanco-Garcia, J.L., Hunley, W.S.,
Fentress, S., Wiggins, M. & Mulholland, M.R. 2011. Environmental and
physical controls on the formation and transport of blooms of the
dinoflagellate Cochlodinium polykrikoides Margalef in the lower
Chesapeake Bay and its tributaries. Estuaries and Coasts 34: 1006-1025.
Mulet, S., Rio, M.H., Mignot, A., Guinehut, S. & Morrow,
R. 2012. A new estimate of the global 3D geostrophic ocean circulation based on
satellite data and in-situ measurements. Deep Sea Research Part II:
Topical Studies in Oceanography 77: 70-81.
Mulholland, M.R., Morse, R.E., Boneillo, G.E., Bernhardt,
P.W., Filippino, K.C., Procise, L.A., Blanco-Garcia, J.L., Marshall, H.G.,
Egerton, T.A. & Hunley, W.S. 2009. Understanding causes and impacts of the
dinoflagellate, Cochlodinium polykrikoides, blooms in the Chesapeake
Bay. Estuaries and Coasts 32: 734-747.
Nagai, S., Nishitani, G., Takano, Y., Yoshida, M. &
Takayama, H. 2009. Encystment and excystment under laboratory conditions of the
nontoxic dinoflagellate Alexandrium fraterculus (Dinophyceae) isolated from the
Seto Inland Sea, Japan. Phycologia 48: 177-185.
Namin, J.I., Sharifinia, M. & Makrani, A.B. 2013.
Assessment of fish farm effluents on macroinvertebrates based on biological
indices in Tajan River (north Iran). Caspian J. Env. Sci. 11: 29-39.
Ndungu, J., Monger, B.C., Augustijn, D.C., Hulscher, S.J.,
Kitaka, N. & Mathooko, J.M. 2013. Evaluation of spatio-temporal variations
in chlorophyll-α in Lake Naivasha, Kenya: remote-sensing approach. International
Journal of Remote Sensing 34: 8142-8155.
Nezlin, N.P., Polikarpov, I.G., Al-Yamani, F.Y., Subba Rao,
D. & Ignatov, A.M. 2010. Satellite monitoring of climatic factors
regulating phytoplankton variability in the Arabian (Persian) Gulf. Journal
of Marine Systems 82: 47-60.
O’Reilly, J.E., Maritorena, S., Siegel, D.A., O’Brien, M.C.,
Toole, D., Mitchell, B.G., Kahru, M., Chavez, F.P., Strutton, P. & Cota,
G.F. 2000. Ocean color chlorophyll-α algorithms for SeaWiFS, OC2, and OC4:
Version 4. SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3:
9-23.
Prasad, T., Ikeda, M. & Kumar, S.P. 2001. Seasonal
spreading of the Persian Gulf Water mass in the Arabian Sea. Journal of
Geophysical Research: Oceans (1978–2012) 106: 17059- 17071.
Purser, B. & Seibold, E. 1973. The principal
environmental factors influencing Holocene sedimentation and diagenesis in the
Persian Gulf. The Persian Gulf pp. 1-9. Springer.
Rao, S. & Al-Yamani, F. 1998. Phytoplankton ecology in
the waters between Shatt Al-Arab and Straits of Hormuz, Arabian Gulf: A review. Plankton Biology and Ecology 45: 101-116.
Richlen, M.L., Morton, S.L., Jamali, E.A., Rajan, A. &
Anderson, D.M. 2010. The catastrophic 2008-2009 red tide in the Arabian gulf
region, with observations on the identification and phylogeny of the
fish-killing dinoflagellate Cochlodinium polykrikoides. Harmful Algae 9: 163-172.
Scheffer, M. 1999. The effect of aquatic vegetation on
turbidity; how important are the filter feeders? Hydrobiologia 408- 409:
307-316.
Sharifinia, M., Namin, J.I. & Makrani, A.B. 2012.
Benthic macroinvertabrate distribution in Tajan River using canonical correspondence
analysis. Caspian J. Env. Sci. 10: 181-194.
Stumpf, R., Culver, M., Tester, P., Tomlinson, M.,
Kirkpatrick, G., Pederson, B., Truby, E., Ransibrahmanakul, V. & Soracco,
M. 2003. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite
ocean color imagery and other data. Harmful Algae 2: 147-160.
Swift, S.A. & Bower, A.S. 2003. Formation and
circulation of dense water in the Persian/Arabian Gulf. Journal of
Geophysical Research: Oceans (1978-2012) 108: 4-1-4-21.
Tester, P.A. & Steidinger, K.A. 1997. Gymnodinium breve
red tide blooms: Initiation, transport, and consequences of surface
circulation. Limnol. Oceanogr. 42(5): 1039-1051.
Tomas, C.R. & Smayda, T.J. 2008. Red tide blooms of Cochlodinium
polykrikoides in a coastal cove. Harmful Algae 7: 308-317.
Trainer, V., Pitcher, G., Reguera, B.
& Smayda, T. 2010. The distribution and impacts of harmful algal bloom
species in eastern boundary upwelling systems. Progress in Oceanography 85:
33-52.
*Pengarang
untuk surat-menyurat; email: moslem.sharifinia@yahoo.com
|