Sains Malaysiana 44(8)(2015): 1183–1188
Separation of Geraniol from Citronellol by Selective Oxidation
of Geraniol to Geranial
(Pengasingan
Geraniol daripada Sitronelol melalui Pengoksidaan Memilih Geraniol
kepada Geranial)
DANIEL
CHONG
JUN
WENG1,
JALIFAH
BINTI LATIP1*, SITI
AISHAH
BINTI HASBULLAH1 & HARJONO
SASTROHAMIDJOJO2
1School of Chemical Sciences &
Food Technology, Faculty of Science and Technology
University
Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
2Department of Chemistry, Gadjah
Mada University, Yogyakarta, Indonesia
Diserahkan:
4 Disember 2014/Diterima: 9 April 2015
ABSTRACT
Rhodinol is a mixture
of geraniol and citronellol. It is the second fraction in fractional
distillation of commercially grown Cymbopogon
nardus (C. nardus). The physical and chemical similarities of
these two compounds made them inseparable. The individual use of
each compound is of great importance. A selective oxidation (hydrogen
peroxide activated by platinum black) of geraniol (in rhodinol)
to geranial was done while remaining citronellol intact in order
to separate the two compounds into different chemical functionality.
A yield of 81% geranial achieved while minimizing citronellal formation
from citronellol to 17%. Chemical separation using sodium hydrogen
sulfite (NaHSO3) was done to separate
the aldehydes from the unreacted citronellol. Purification using
fractional distillation was done to obtain pure geraniol and remove
minor fraction of citronellal.
Keywords: Geranial;
geraniol; oxidation; rhodinol; selective
ABSTRAK
Rodinol adalah sebatian
yang terdiri daripada geraniol dan sitronelol. Dengan menggunakan
kaedah penyulingan berperingkat, rodinol adalah pecahan kedua Cymbopogon nardus (C. nardus). Kedua-dua sebatian ini tidak boleh
diasingkan disebabkan ciri fizikal dan kimia yang seiras. Kegunaan
geraniol dan sitronelol sebagai sebatian yang berasingan adalah
penting daripada segi industri. Dalam kajian ini, pengoksidaan memilih
(hidrogen peroksida yang diaktifkan oleh platinum hitam) geraniol
(dalam rodinol) kepada geranial dilakukan sementara sitronelol kekal
utuh supaya kedua-dua sebatian ini boleh diasingkan dengan keadaan
fungsi kimia yang berlainan. Tindak balas ini memberikan hasil sebanyak
81% geranial dan berjaya meminimumkan penghasilan sitronelal daripada
sitronelol kepada 17%. Dengan menggunakan cara pengasingan kimia,
hidrogen sulfit (NaHSO3) digunakan untuk mengasingkan
aldehid daripada sitronelol. Akhirnya, pecahan kecil sitronelal
diasingkan daripada geraniol tulen dengan menggunakan penyulingan
berperingkat.
Kata kunci: Geranial; geraniol; memilih; pengoksidaan; rodinol
RUJUKAN
Abad, A., Corma, A. & García, H. 2007. Supported gold nanoparticles
for aerobic, solventless oxidation of allylic alcohols. Pure
and Applied Chemistry 79(11): 1847-1854.
Armarego, W.L.F. & Chai, C. 2009. Purification of Laboratory
Chemicals. 6th ed. Burlington, MA: Butterworth-Heinemann.
Byenkya, G.S., Gumisiriza, G. & Kasigwa, H. 2013. Evaluation
of control stradegies for Cymbopogon nardus in grazing areas
of Uganda. Journal of Agricultural Science and Technology B 3:
656-660.
Dowthwaite, S.V. 2009. Empowering the independent perfumer. The
Professional Perfumer’s Bulletin © 3.01-3.28.
pp. 1-39.
Ganjewala, D. 2009. Cymbopogon essential oils: Chemical compositions
and bioactivities. International Journal of Essential Oil Therapeutics
3: 56-65.
Gholizadeh, M., Mohammadpoor-Baltork, I. & Kharamesh, B. 2004.
Selective oxidation of benzylic and allylic alcohols using strontium
manganate in the presence of lewis acids in solution and under solvent-free
conditions. Bulletin of the Korean Chemical Society 25(4):
566-568.
Gilpin, S., Hui, X. & Maibach, H. 2010. In vitro human
penetration of geraniol and citronellol. Dermatitis 21: 41-48.
Haake, M., Gerlach, T. & Funke, F. 2004. U.S. Patent 6743956
B1.
Join, B., Möller, K., Ziebart, C., Schröder, K., Gördes, D., Thurow,
K., Spannenberg, A., Junge, K. & Beller, M. 2011. Selective
iron-catalyzed oxidation of benzylic and allylic alcohols. Advanced
Synthesis & Catalysis 353(16): 3023- 3030.
Kon, Y., Yazawa, H., Usui, Y. & Sato, K. 2008. Chemoselective
oxidation of alcohols by a H2O2-Pt
black system under organic solvent- and halide-free conditions.
Chemistry, An Asian Journal 3(8-9): 1642-1648.
Laksmono, J.A., Agustian, E. & Adilina, I.B. 2007. Predicting
the azeotrophic of citronellal enrichment using process simulator.
International Conference On Chemical Sciences. pp. 1-5.
Roelofs, J.C.A.A. 2001. Activated hydrotalcites as solid base catalysts
in Aldol condensations. PhD Thesis. Utrecht University, Netherlands (unpublished).
Roelofs, J.C.A.A., Dillen, A.J. & Jong, K.P. 2000. Base-catalyzed
condensation of citral and acetone at low temperature using modified
hydrotalcite catalysts. Catalysis Today 60: 297-303.
Sastrohamidjojo, H. 1994. Kimia minyak sereh= The chemistry of citronella
oil. Berkala MIPA (1).
Singh, D., Kumar, T.R., Gupt, V.K. & Chaturvedi, P. 2012. Antimicrobial
activity of some promising plant oils, molecules and formulations.
Indian Journal of Experimental Biology 50: 714-717.
Ssegawa, P. 2007. Removing barriers to invasive plant management
in Africa. Final report on activity 3,4 of component 3 of the UNEP/GEF-IAS
funded project (NARO). Makerere University (Kampala).
Wany, A., Jha, S., Nigam, V.K. & Pandey, D.M. 2013. Chemical
analysis and therapeutic uses of citronella oil from Cymbopogon
winterianus: A short review. International Journal of Advanced
Research 1: 504-521.
Xing, K., You, K., Yin, D., Yuan, Z. & Mao, L. 2009. A simple
and effiecient approach for synthesis of pseudoionone from citral
and acetone catalyzed by powder LiOH.H2O. Catalysis
Communications 11: 236-239.
*Pengarang untuk surat-menyurat;
email: jalifah@ukm.edu.my
|