Sains Malaysiana 44(8)(2015): 1195-1201
Preparation of Titanium Dioxide Hollow Fiber Membrane Using Phase Inversion
and Sintering Technique for Gas Separation and Water Purification
(Penyediaan
Membran Gentian Geronggang Titanium Dioksida (TiO2)
Menggunakan Teknik Penyongsangan Fasa dan Persinteran untuk Pemisahan
Gas dan Penulenan Air)
MUKHLIS
A
RAHMAN*, MOHD AKMAL
GHAZALI,
WAN
MUHAMMAD
SOLEHIN
WAN
ABD
AZIZ,
MOHD
HAFIZ
DZARFAN
OTHMAN,
JUHANA
JAAFAR
& AHMAD FAUZI ISMAIL
Advanced
Membrane Technology Research Centre, Faculty of Petroleum and Renewable
Energy Engineering, Universiti Teknologi Malaysia , 81310 Skudai,
Johor Darul Takzim, Malaysia
Diserahkan:
16 Julai 2014/Diterima: 6 April 2015
ABSTRACT
This article describes
the preparation of titanium dioxide (TiO2)
hollow fiber membrane using phase inversion and sintering technique.
In this study, nano-sized TiO2 powders
with different particle sizes were used to prepare ceramic hollow
fiber membranes. In a series of preparation steps, a dispersant
was dissolved in organic solvent before the addition of ceramic
powders. These steps were followed by the addition of polymer binder.
The membrane precursor was obtained by extruding the ceramic suspension
into a coagulation bath, which enabled the precipitation of the
precursor of ceramic hollow fiber membrane. The dried precursor
was later sintered at temperatures ranging from 1200 to 1300oC
to obtain TiO2 hollow fiber membrane. Scanning
electron microscopy (SEM) was used to study the morphology
of TiO2 hollow fiber membrane. The SEM images
show the membrane can be shaped into asymmetric structure and symmetric
structure based on the ceramic suspension compositions. The highest
mechanical strength obtained was 223 MPa when the membrane prepared
using 20 wt. % ceramic loading of single nano-sized powder and sintered
at 1300oC.
TiO2 hollow fiber membrane prepared
using similar ceramic loading showed high permeation rate of inert
gas. High pure water fluxes were obtained when permeability tests
was carried out using TiO2 hollow fiber membrane, prepared
using mixture of nano-sized particles, even though its cross-section
have a sponge-like structure.
Keywords: Nano-size
particles; phase inversion; sintering process; titanium dioxide
ABSTRAK
Artikel ini menerangkan
penyediaan membran gentian geronggang titanium dioksida (TiO2)
menggunakan teknik penyongsangan fasa dan persinteran. Partikel
TiO2 bersaiz
nano dengan saiz partikel yang berbeza telah digunakan untuk menyediakan
membran seramik. Dalam langkah persediaan, bahan penyerak dilarutkan
terlebih dahulu sebelum penambahan bahan seramik. Langkah ini diikuti
dengan penambahan pengikat polimer. Pelopor membran telah diperoleh
dengan menyemperit campuran seramik ke dalam takungan pengentalan,
bagi membolehkan pemendakan pengikat polimer berlaku. Pelopor yang
telah kering kemudiannya disinter pada julat suhu 1200 dan 1300oC untuk mendapatkan membran gentian
geronggang TiO2. Mikroskop elektron imbasan (SEM)
digunakan untuk mengkaji morfologi TiO2 gentian
geronggang membran. Imej SEM menunjukkan membran boleh dibentuk
menjadi struktur yang simetri dan struktur yang tidak simetri berdasarkan
komposisi campuran seramik. Kekuatan mekanik tertinggi yang diperoleh
ialah 223 MPa apabila membran disediakan dengan menggunakan 20%
(berat) seramik (serbuk bersaiz nano tunggal) dan disinter pada
suhu 1300oC.
Gentian geronggang membran TiO2 disediakan
dengan menggunakan muatan seramik sama menunjukkan kadar ketelapan
yang tinggi terhadap gas lengai. Kadar ketelapan air yang tinggi
diperoleh apabila ujian kebolehtelapan dilakukan dengan menggunakan
gentian geronggang membran TiO2,
disediakan dengan menggunakan campuran partikel bersaiz nano, walaupun
keratan rentas tersebut mempunyai struktur seperti span.
Kata kunci: Fasa balikan; partikel bersaiz nano; proses persinteran;
titanium dioksia
RUJUKAN
García-García, F.R., Rahman, M.A., Kingsbury, B.F.K. & Li, K.
2011. Asymmetric ceramic hollow fibres: New micro-supports for gas-phase
catalytic reactions. Applied Catalysis A: General 393: 71-77.
Kingsbury, B.F.K. & Li, K. 2009. A morphological study of ceramic
hollow fibre membranes. Journal of Membrane Science 328:
134-140.
Koros, W.J., Coleman, M.R. & Walker, D.R.B. 1992. Controlled
permeability polymer membranes. Annual Review of Materials Science
22: 47-89.
Lange, R.S.A., Hekkink, J.H.A., Keizer, K. & Burggraaf, A.J.
1995. Formation and characterization of supported microporous ceramic
membranes prepared by sol-gel modification techniques. Journal
of Membrane Science 99: 57-75.
Liu, S., Tan, X., Li, K. & Hughes, R. 2001. Preparation and characterization
of SrCe0.95Yb0.05O2.975
hollow fibre membranes. Journal of Membrane Science
193: 249-260.
Othman, M.H.D., Wu, Z., Droushiotis, N., Doraswami, U., Kelsall,
G. & Li, K. 2010a. Single-step fabrication and characterisations
of electrolyte/anode dual-layer hollow fibres for micro-tubular
solid oxide fuel cells. Journal of Membrane Science 351:
196-204.
Othman, M.H.D., Wu, Z., Droushiotis, N., Kelsall, G. & Li, K.
2010b. Morphological studies of macrostructure of Ni–CGO anode hollow
fibres for intermediate temperature solid oxide fuel cells. Journal
of Membrane Science 360: 410-417.
Shao, P. & Huang, R.Y.M. 2007. Polymeric membrane pervaporation.
Journal of Membrane Science 287: 162-179.
Ulbricht, M. 2006. Advanced functional polymer membranes. Polymer
47: 2217-2262.
Wei, C.C., Chen, O.Y., Liu, Y. & Li, K. 2008. Ceramic asymmetric
hollow fibre membranes - One step fabrication process. Journal
of Membrane Science 320: 191-197.
Wu, Z.T., Thursfield,
A., Metcalfe, I. & Li, K. 2012. Effects of separation layer
thickness on oxygen permeation and mechanical strength of DL-HFMR-ScSZ.
Journal of Membrane Science 415: 229-236.
Zaidi,
S.M.J. 2003. Polymer sulfonation - A versatile route to prepare
proton-conducting membrane material for advanced technologies. Arabian
Journal for Science and Engineering 28: 183-194.
*Pengarang untuk surat-menyurat;
email: r_mukhlis@utm.my
|