Sains Malaysiana 45(10)(2016): 1477–1485

 

Characteristics and Performance of a Mesoporous Cerium-Aluminum-Silver Mixed Oxide for Removal of Methyl Violet Dye

(Pencirian dan Prestasi Campuran Oksida Mesoberliang Serium-Aluminum-Perak untuk Menanggalkan Pewarna Metil Ungu)

 

PHATAI, P.1* & SRISOMANG, R.2

 

1Department of Chemistry, Faculty of Science, Udon Thani Rajabhat University, Udon Thani,

41000 Thailand

 

2Polymer and Material Research Groups, Faculty of Science, Udon Thani Rajabhat University

Udon Thani, 41000 Thailand

 

Diserahkan: 17 Oktober 2015/Diterima: 16 Mac 2016

 

ABSTRACT

In this study, the adsorption efficiency of methyl violet (MV) dye onto Ce0.3Al0.7 and Ce0.3Al0.7Agx (x = 0.1, 0.3 & 0.5) mixed oxides was investigated. The properties of mixed oxide were determined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), N2 adsorption-desorption isotherm, diffuse reflectance UV-vis spectroscopy (UV-vis DRS) and X-ray absorption near edge structure (XANES). Characterization showed that synthesized mixed oxide with fluorite has a pure cubic structure of a mesoporous nature and a small grain size with rough surface. Batch adsorption experiments were used to study parameters including contact time and initial dye concentration. The results showed that these parameters affected the degree of MV dye adsorption. The dye adsorption of mixed oxides attained equilibrium at 120 min. The equilibrium adsorption data were analyzed using Langmuir, Freundlich and Temkin isotherms. The adsorption behavior of MV dye onto Ce0.3Al0.7 was found to follow the Langmuir isotherm (R2 = 0.9951), providing a maximum monolayer adsorptive capacity of 2.35 mg/g. Alternatively, the adsorption of MV dye onto Ce0.3Al0.7Ag0.1 (R2 = 0.7839), Ce0.3Al0.7Ag0.3 (R2 = 0.9301) and Ce0.3Al0.7Ag0.5 (R2 = 0.9396) followed the Freundlich isotherm. The possible adsorption mechanisms of MV dyes onto the Ce0.3Al0.7 and Ce0.3Al0.7Agx were also discussed.

 

Keywords: Cerium & aluminum mixed oxides; Langmuir isotherm; methyl violet dye; silver

 

ABSTRAK

Dalam penyelidikan ini, kecekapan penjerapan pewarna metil ungu (MV) ke atas Ce0.3Al0.7 dan Ce0.3Al0.7Agx (x = 0.1, 0.3 & 0.5) campuran oksida dikaji. Sifat campuran oksida telah ditetapkan melalui pembelauan sinar-x (XRD), spektroskopi transformasi Fourier inframerah (FTIR), mikroskop elektron imbasan (SEM), spektroskopi serakan tenaga sinar-x (EDX), N2 penjerapan-penyahjerapan isoterma, meresap pemantulan UV-vis spektroskopi (DRS UV-vis) serta penyerapan X-ray berhampiran sisi struktur (XANES). Pencirian menunjukkan bahawa sintesis campuran oksida dengan fluorit mempunyai struktur padu tulen bersifat mesoporous dan saiz kecil bijirin dengan permukaan yang kasar. Kelompok penjerapan eksperimen telah digunakan untuk mengkaji parameter termasuk hubungan masa dan tumpuan awal pewarna. Hasil kajian menunjukkan bahawa parameter ini menjejaskan tahap penjerapan pewarna MV. Penjerapan pewarna daripada campuran oksida mencapai keseimbangan pada 120 min. Keseimbangan penjerapan data dianalisis menggunakan isoterma Langmuir, Freundlich dan Temkin. Perlakuan penjerapan pewarna MV ke dalam Ce0.3Al0.7 dilihat mengikuti isoterma Langmuir (R2 = 0.9951), menyediakan kapasiti penjerapan maksimum monolapisan 2.35 mg/g. Sebagai alternatif, penjerapan daripada pewarna MV ke dalam Ce0.3Al0.7Ag0.1 (R2 = 0.7839), Ce0.3Al0.7Ag0.3 (R2 = 0.9301) dan Ce0.3Al0.7Ag0.5 (R2 = 0.9396) diikuti isoterma Freundlich. Mekanisme penjerapan munasabah pewarna MV ke dalam Ce0.3Al0.7 dan Ce0.3Al0.7 Agx juga turut dibincangkan.

 

Kata kunci: Campuran oksida serium & aluminium; isoterma Langmuir; perak; pewarna metil ungu

RUJUKAN

Akgűl, M. & Karabakan, A. 2011. Promote dye adsorption performance over desilicated natural zeolite. Microporous Mesoporous Materials 145: 157-164.

Alshabanat, M., Alsenani, G. & Almufarij, R. 2013. Removal of crystal violet dye from aqueous solution onto date palm fiber by adsorption technique. Journal of Chemistry 2013: Article ID 210239.

Aykut, Y., Pourdeyhimi, B. & Khan, S.A., 2013. Synthesis and characterization of silver/lithium cobalt oxide (Ag/LiCoO2) nanofibers via sol-gel electrospinning. J. Phys. Chem. Solid 74: 1538-1545.

Biswas, K., Gupta, K. & Ghosh, U.C. 2009. Adsorption of fluoride by hydrous iron (III)-tin (IV) bimetal mixed oxide from the aqueous solutions. Chemical Engineering Journal 149: 196-206.

Debnath, S., Kitinya, J. & Onyango, M.S. 2014. Removal of Congo red from aqueous solution by two variants of calcium and iron based mixed oxide nano-particle agglomerates. Journal of Industrial and Engineering Chemistry 20: 2119- 2129.

Deniz, F. 2013. Adsorption properties of low-cost biomaterial derived from Prunus amygdalus L. for dye removal from water. The Scienctific World Journal 2013: Article ID 961671.

Dhonge, B.P., Mathews, T., Sundari, S.T., Thinaharan, C., Kamruddin, M., Dash, S. & Tyagi A.K. 2011. Spray pyrolytic deposition of transparent aluminum oxide (Al2O3) films. Applied Surface Science 258: 1091-1096.

Gambardella, A.A., Schmidt Patterson, C.M., Webb, S.M. & Walton, M.S. 2016. Sulfur K-edge XANES of lazurite: Toward determining the provenance of lapis lazuli. Microchemical Journal 125: 299-307.

Guimarães, J.R., Maniero, M.G. & de Araújo, R.N. 2012. A comparative study on the degradation of RB-19 dye in an aqueous medium by advanced oxidation processes. Journal of Environmental Management 110: 33-39.

Jiao, F., Yu, J., Song, H., Jiang, X., Yang, H., Shi, S., Chen, X. & Yang, W. 2014. Excellent adsorption of acid flavine 2G by MgAl-mixed metal oxides with magnetic iron oxide. Applied Clay Science 101: 30-37.

Jugo, P.J., Wilke, M. & Botcharnikov, R.E. 2010. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as function of oxygen fugacity. Geochimica et Cosmochimica Acta 74: 5926-5938.

Kongkachuichay, P., Shitangkoon, A. & Hirunkitmonkon, S. 2010. Thermodynamics study of natural indigo adsorption on silk yarn. Chiangmai Journal of Science 37: 363-367.

Lian, L., Guo, L. & Guo, C. 2009. Adsorption of Congo red from aqueous solutions onto Ca-bentonite. Journal of Hazardous Materials 161: 126-131.

Mittal, A., Gajbe, V. & Mittal, J. 2008. Removal and recovery of hazardous triphenylmethane dye, methyl violet through adsorption over granulated waste materials. Journal of Hazardous Materials 150: 364-375.

Monash, P. & Pugazhenthi, G. 2009. Adsorption of crystal violet dye from aqueous solution using mesoporous materials synthesized at room temperature. Adsorption 15: 390-405.

Phatai, P. & Futalan, C.M. 2016. Removal of methyl violet dye by adsorption onto mesoporous mixed oxides of cerium and aluminum. Desalination and Water Treatment 57: 8884-8893.

Phatai, P., Utara, S. & Hatthapanit, N. 2014. Removal of methyl violet by adsorption onto activated carbon derived from coffee residues. Advanced Materials Research 864-867: 710-714.

Rao, G.R. & Sahu, H.R. 2011. XRD and UV-Vis diffuse reflectance analysis of CeO2-ZrO2 solid solutions synthesized by combustion method. Proceedings of the Indian Academy of Sciences 113: 651-658.

Rao, G.R. & Mishra, B.G., 2005. A comparative UV-vis-diffuse reflectance study on the location and interaction of cerium ions in Al- and Zr-pillared montmorillonite clays. Materials Chemistry and Physics 89(1): 110-115.

Sarici-Ozdemir, C. 2012. Adsorption and desorption kinetics behavior of methylene blue onto activated carbon. Physicochemical Problems of Mineral Processing 48: 441- 454.

Subramaniam, R. & Ponnusamy, S.K. 2015. Novel adsorbent from agricultural waste (cashew NUT shell) for methylene blue dye removal: Optimization by response surface methodology. Water Resources and Industry 11: 64-70.

Tan, K.B., Vakili, M., Horri, B.A., Poh, P.E., Abdullah, A.Z. & Salamatinia, B. 2015. Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms. Separation and Purification Technology 150: 229-242.

Tapalad, T., Neramitagapong, A., Neramitgapong, S. & Boonmee, M. 2008. Degradation of congo red dye by ozonation. Chiang Mai Journal of Science 35: 63-68.

Wang, D., Zhang, X., Liu, C., Cheng, T., Wei, W. & Sun, Y. 2015. Transition metal-modifies mesoporous Mg-Al mixed oxides: Stable base catalysts for the synthesis of diethyl carbonate from ethyl carbamate and ethanol. Applied Catalysis A: General 505: 478-486.

Wang, L., Li, J., Wang, Y., Zhao, L. & Jiang, Q. 2012. Adsorption capacity for Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel ferrites. Chemical Engineering Journal 181-182: 72-79.

Wawrzkiewicz, M., Wiśniewska, M., Gun’ko, V.M. & Zarko, V.I. 2015. Adsorptive removal of acid, reactive and direct dyes from aqueous solutions and wastewater using mixed silica-alumina oxide. Powder Technology 278: 306-315.

Xiaodong, W., Hyeing-Ryeol, L., Shuang, L. & Duan, W. 2012. Sulfur poisoning and regeneration of MnOx-CeO2-Al2O3 catalyst for soot oxidation. Journal of Rare Earths 30: 659- 664.

Xie, Y., Wang, J., Wang, M. & Ge, X. 2015. Fabrication of fibrous amidoxime-fuctionalized mesoporous silica microsphere and its selectively adsorption property for Pb2+ in aqueous solution. Journal of Hazardous materials 297: 66-73.

Zabilskiy, M., Erjavec, B., Djinovic, P. & Pintar, A. 2014. Ordered mesoporous CuO-CeO2 mixed oxides as an effective catalyst for N2O decomposition. Chemical Engineering Journal 254: 153-162.

Zaini, M.A.A., Meng, T.W., Johari Kamaruddin, M., Septapar, S.H.M. & Azizi Che Yunus, M. 2014. Microwave-induced zinc chloride active palm kernel shell for dye removal. Sains Malaysiana 43(9): 1421-1428.

Zeng, S., Duan, S., Tang, R., Li, L., Liu, C. & Sun, D. 2014. Magnetically separable Ni0.6Fe2.4O4 nanoparticles as an effective adsorbent for dye removal: Synthesis and study on the kinetic and thermodynamic behaviors for dye adsorption. Chemical Engineering Journal 258: 218-228.

 

 

*Pengarang untuk surat menyurat; email: piawtee99@hotmail.com

 

 

 

sebelumnya