Sains Malaysiana 45(10)(2016):
1551–1556
Pressure Dependence
of Structural, Elastic and Electronic Properties of α-Al2O3:
First-principles Calculations
(Tekanan Pergantungan
kepada Sifat Struktur, Anjal dan Elektronik α -Al2O3: Pengiraan Prinsip-Pertama)
QI-JUN
LIU1,2*
& ZHENG-TANG LIU3
1School of Physical
Science and Technology, Southwest Jiaotong University, Key Laboratory
of Advanced Technologies of Materials, Ministry of Education
of China, Chengdu 610031
People’s Republic
of China
2Bond and Band Engineering
Group, Sichuan Provincial Key Laboratory (for Universities)
of High Pressure
Science and Technology, Southwest Jiaotong University, Chengdu
610031
People’s Republic
of China
3State Key Laboratory
of Solidification Processing, Northwestern Polytechnical University
Xi’an 710072 People’s
Republic of China
Diserahkan: 25
Ogos 2013/Diterima: 3 Februari 2016
ABSTRACT
The first-principles calculations
were performed to investigate the structural, elastic, mechanical
and electronic properties of α-Al2O3 at
applied pressure up to 50 GPa. The obtained ground state properties
were in agreement with previous experimental and theoretical
data. The elastic constants, bulk modulus, shear modulus, Young’s
modulus and anisotropy have been calculated as pressure increased.
It was found that there was a brittle-ductile transition at
about 23.2 GPa. The increasing ratio Ba /Bc with pressure
indicates the weakening chemical bonding and the increasing
anisotropy in this compound. The electronic structures were
also calculated, which shows that band gaps increase monotonically.
The population analysis showed the charge transfer was mainly
between Al-3s and O-2p as pressure increased.
Keywords: Density functional
theory; elastic properties; electronic structure; α-Al2O3
ABSTRAK
Pengiraan prinsip-pertama dijalankan
untuk mengkaji sifat struktur, anjal, mekanik dan elektronik
α-Al2O3 pada
tekanan yang dikenakan sehingga 50 GPa. Sifat keadaan tanah
yang diperoleh adalah sama dengan data uji kaji dan teori yang
terdahulu. Pemalar anjal, modulus pukal, modulus ricih, modulus
Young dan anisotrofi telah dihitung apabila tekanan meningkat.
Didapati bahawa terdapat peralihan rapuh-mulur pada 23.2 GPa.
Peningkatan nisbah Ba
/Bc dengan tekanan
menunjukkan ikatan kimia yang semakin lemah dan anisotrofi yang
semakin meningkat dalam sebatian ini. Struktur elektronik juga
dihitung yang menunjukkan bahawa jurang jalur meningkat secara
senada. Analisis penduduk menunjukkan pemindahan caj antara
Al-3s dan O-2p apabila tekanan meningkat.
Kata kunci: Sifat anjal; struktur elektronik; teori fungsi ketumpatan;
α-Al2O3
RUJUKAN
Ahuja, R., Osorio-Guillen,
J.M., Souza de Almeida, J., Holm, B., Ching, W.Y. & Johansson,
B. 2004. Electronic and optical properties of γ-Al2O3 from ab initio theory. J. Phys.: Condens.
Matter. 16: 2891-2900.
Asahi, R., Taga,
Y., Mannstadt, W. & Freeman, A.J. 2000. Electronic and optical
properties of anatase TiO2. Phys. Rev. B 61: 7459-7465.
Born, M. &
Huang, K. 1982. Dynamical Theory and Experiment I. Berlin:
Springer-Verlag.
Chen, J., Xu, Y.,
Chen, D.Q. & Zhang, J.L. 2008. Ab initio study of
a Y-doped Σ31 grain boundary in alumina. Sci. China
Ser. G 38: 1066-1074.
Chen, H.S. 1996.
Anisotropy of Elasticity About Metal. Beijing: Metallurgy
Industry Press.
Copel, M., Cartier,
E., Gusev, E.P., Guha, S., Bojarczuk, N. & Poppeller, M.
2001. Robustness of ultrathin aluminum oxide dielectrics on
Si(001). Appl. Phys. Lett. 78: 2670-2672.
Duan, W., Karki,
B.B. & Wentzcovitch, R.M. 1999. High-pressure elasticity
of alumina studied by first principles. American
Mineralogist 84: 1961-1966.
Duan, W., Wentzcovitch,
R.M. & Thomson, K.T. 1998. First-principles study of high-pressure
alumina polymorphs. Phys.
Rev. B 57: 10363-10369.
d’Amour, H., Schiferl,
D., Denner, W., Schulz, H. & Holzapfel, W.B. 1978. High‐pressure
single‐crystal structure determinations for ruby
up to 90 kbar using an automatic diffractometer. J. Appl.
Phys. 49: 4411-4416.
Fast, L., Wills,
J.M., Johansson, B. & Eriksson, O. 1995. Elastic constants
of hexagonal transition metals. Theory Phys. Rev. B 51:
17431-17438.
Fernández, E.M.,
Borstel, G., Soler, J.M. & Balbás, L.C. 2003a. Study of
(Al2O3)n(Ox) clusters with n ≤ 16 and x = 0, 1, 2
from first principles calculations. Eur. Phys. Journal D
24: 245-248.
Fernández, E.M.,
Balbás, L.C., Borstel, G. & Soler, J.M. 2003b. First principles
calculation of the geometric and electronic structure of (Al2O3)n(Ox) clusters
with n<15 and ×=0, 1, 2. Thin Solid Films 428: 206-210.
French, R.H. 1990.
Electronic band structure of Al2O3, with comparison to AlON and AlN. J. Am.
Ceram. Soc. 73: 477- 489.
Gieske, J.H. &
Barsch, G.R. 1968. Pressure dependence of the elastic constants
of single crystalline aluminum oxide. Physica Status Solidi
29: 121-131.
Gladden, J.R.,
So, J.H., Maynard, J.D., Saxe, P.W. & Le Page, Y. 2004.
Reconciliation of ab initio theory and experimental elastic
properties of Al2O3. Appl. Phys. Lett. 85: 392-394.
Gusev, E.P., Cartier,
E., Buchanan, D.A., Gribelyuk, M., Copel, M., Okorn-Schmidt,
H. & D’Emic, C. 2001. Ultrathin high-K metal oxides on silicon:
Processing, characterization and integration issues. Microelectron.
Eng. 59: 341-349.
Haverty, M., Kawamoto,
A., Cho, K. & Dutton, R. 2002. First-principles study of
transition-metal aluminates as high-k gate dielectrics. Appl.
Phys. Lett. 80: 2669-2671.
Hill, R. 1952.
The elastic behaviour of a crystalline aggregate. Proc. Phys.
Soc. London 65: 349-354.
Hosseini, S.M.,
Rahnamaye Aliabad, H.A. & Kompany, A. 2005a. Influence of
La on electronic structure of α-Al2O3 high k-gate
from first principles. Ceram. Int. 31: 671-675.
Hosseini, S.M.,
Rahnamaye Aliabad, H.A. & Kompany, A. 2005b. First-principles
study of the optical properties of pure α-Al2O3 and La aluminates.
Eur. Phys. J. B 43: 439-444.
Hovis, D.B., Reddy,
A. & Heuer, A.H. 2006. X-ray elastic constants for α-Al2O3.
Appl. Phys. Lett. 88: 131910.
Kruse, C., Finnis,
M.W., Lin, J.S., Payne, M.C., Milman, V.Y., Vita, A.D. &
Gillan, M.J. 1996. First-principles study of the atomistic and
electronic structure of the niobium-α-alumina (0001) interface.
Phil. Mag. Lett. 73: 377-383.
Liao, C.C., Chin,
A. & Tsai, C. 1999. Electrical characterization of Al2O3 on Si from thermally
oxidized AlAs and Al. J. Crystal Growth 201-202: 652-655.
Limarga, A.M.,
Widjaja, S. & Yip, T.H. 2005. Mechanical properties and
oxidation resistance of plasma-sprayed multilayered Al2O3/ZrO2 thermal barrier coatings. Surf. Coat. Technol.
197: 93-102.
Limarga, A.M.,
Widjaja, S., Yip, T.H. & Teh, L.K. 2002. Modeling of the
effect of Al2O3 interlayer
on residual stress due to oxide scale in thermal barrier coatings.
Surf. Coat. Technol. 153: 16-24.
Lee, W.E. &
Lagerlof, K.P.D. 1985. Structural and electron diffraction data
for sapphire (α-Al2O3). J. Electron. Microsc. Tech. 2:
247-258.
Matsunaga, K.,
Tanaka, T., Yamamoto, T. & Ikuhara, Y. 2003. First-principles
calculations of intrinsic defects in Al2O3. Phys. Rev. B 68: 085110.
Murnaghan, F.D.
1944. The compressibility of media under extreme pressures.
Proc. Natl. Acad. Sci. USA 30: 244-247.
Ollivier, B., Retoux,
R., Lacorre, P., Massiot, D. & Férey, G. 1997. Crystal structure
of k-alumina: An X-ray powder diraction, TEM and NMR study.
J. Mater. Chem. 7: 1049-1056.
Perdew, J.P., Chevary,
J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J.
& Fiolhais, C. 1992. Atoms, molecules, solids, and surfaces:
Applications of the generalized gradient approximation for exchange
and correlation. Phys. Rev. B 46: 6671-6687.
Pugh, S.F. 1954.
Relations between the elastic moduli and the plastic properties
of polycrystalline pure metals. Philos. Mag. 45: 823-843.
Ravindran, P.,
Fast, L., Korzhavyi, P.A., Johansson, B., Wills, J. & Eriksson,
O. 1998. Density functional theory for calculation of elastic
properties of orthorhombic crystals: Application to TiSi2. J.
Appl. Phys. 84: 4891-4904.
Reuss, A. 1929.
Berechnung der Fließgrenze von Mischkristallen auf Grund der
Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech.
9: 49-58.
Ru, Q. & Qiu,
X.L. 2009. The electronic structure and mechanical property
of alpha Al2O3 by first principles calculation. Mater. Res.
Application 3: 162-167.
Segall, M.D., Lindan,
P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J.
& Payne, M.C. 2002. First-principles simulation: Ideas,
illustrations and the CASTEP code. J. Phys.: Condens. Matter
14: 2717-2744.
Shang, S., Wang,
Y. & Liu, Z.K. 2007. First-principles elastic constants
of α- and Ө-Al2O3.
Appl. Phys. Lett. 90: 101909.
Shanmugavelayutham,
G., Yano, S. & Kobayashi, A. 2006. Microstructural characterization
and properties of ZrO2/ Al2O3
thermal barrier coatings by gas tunnel-type
plasma spraying. Vacuum 11-12: 1336-1340.
Shi, S., Tanaka, S. & Kohyama, M. 2006. First-principles
study on the adhesion nature of the α-Al2O3(0001)/Ni(111) interface. Modelling
Simul. Mater. Sci. Eng. 14: S21-S28.
Sin’ko, G.V. &
Smirnov, N.A. 2002. Ab initio calculations of elastic
constants and thermodynamic properties of bcc, fcc, and hcp
Al crystals under pressure. J. Phys.: Condens. Matter 14:
6989-7005.
Tian, S. 2004.
Materials Physical Properties. Beijing: Beijing University
of Aeronautics and Astronautics Press.
Vali, R. &
Hosseini, S.M. 2004. First-principles study of structural, dynamical,
and dielectric properties of κ-Al2O3.
Comput. Mater. Sci. 29: 138-144.
Voigt, W. 1928.
Lehrbuch der kristallphysik. Leipzig: Teubner.
Widjaja, S., Limarga,
A.M. & Yip, T.H. 2002. Oxidation behavior of a plasma-sprayed
functionally graded ZrO2/Al2O3 thermal
barrier coating. Mater. Lett. 57: 628-634.
Yang, C., Feng,
Y.F. & Yu, Y. 2009. Dynamics study of the adsorption and
diffusion in early growth stage of AlN/α- Al2O3(0001)
films. Acta Phys. Sinica 58: 3553-3559.
Yang, C., Yu, Y.,
Li, Y.R. & Liu, Y.H. 2004. The relaxation of α-Al2O3(0001)
surface impacts on its electronic states. Chinese J. Chem.
Phys. 17: 537-542.
Yu, Q.H., Zhou,
C.G., Zhang, H.Y. & Zhao, F. 2010. Thermal stability of
nanostructured 13 wt% Al2O3-8 wt% Y2O3-
ZrO2 thermal barrier coatings. J.
Eur. Ceram. Soc. 30: 889-897.
Zhukovskii, Yu.F.,
Kotomin, E.A., Herschend, B., Hermansson, K. & Jacobs, P.W.M.
2001. A first-principles study of the Ag/α-Al2O3(0001)
interface. Int. J. Mol. Sci. 2: 271-280.
Zhu, J., Yu, J-X.,
Wang, Y-J., Chen, X-R. & Jing, F-Q. 2008 First-principles
calculations for elastic properties of rutile TiO2 under
pressure. Chin. Phys. B 17: 2216-2221.
*Pengarang untuk surat-menyurat; email: qijunliu@home.swjtu.edu.cn