Sains Malaysiana 45(10)(2016):
1579–1587
A New Model to Predict the Unsteady
Production of Fractured Horizontal Wells
(Model Baharu untuk Meramalkan Pengeluaran
tak Menentu Telaga Mendatar yang Retak)
FANHUI-ZENG*,
XIAOZHAO-CHENG,
JIANCHUN-GUO,
CHUAN
LONG
& YUBIAO-KE
State Key Laboratory
of Oil and Gas Geology and Exploration, Southwest Petroleum University
610500, Chengdu,
P.R. China
Diserahakn: 2 Julai
2015/Diterima: 7 Mac 2016
ABSTRACT
Based on the hydraulic fracture
width gradually narrows along the fracture length, with consideration
of the mutual influences of fracture, non-uniform inflow of fractures
segments and variable mass flow in the fracture comprehensively,
a spatial separation method and time separation method were used
to establish fracture horizontal well’s dynamic coupling model of
reservoir seepage and fracture flow. The results showed that the
calculation productivity of variable width model is higher than
that of the fixed width model, while the difference becomes smaller
as time increase. Due to mutual interference of the fractures, the
production of outer fracture is higher than that of the inner fracture.
When the dimensionless fracture conductivity is 0.1, the middle segment
of the fracture dominates the productivity and local peak emerges
near the horizontal well. The flow in the fracture is with the ‘double
U’ type distribution. As the dimensionless fracture conductivity
increase, the fractures productivity mainly through the tips and
the flow in the fractures with the ‘U’ type distribution. Using
the established fracture width variable productivity prediction
model, one can achieve the quantitative optimization of fracture
shape.
Keywords: Fractured horizontal
well; fracture shape quantitative optimization; flux distribution;
unsteady productivity; variable fracture width
ABSTRAK
Berdasarkan lebar retak hidraulik
beransur-ansur sempit sepanjang kepanjangan retak, dengan pertimbangan
retak pengaruh bersalingan, aliran masuk segmen retak tak seragam
dan pemboleh ubah aliran jisim dalam retak secara menyeluruh, kaedah
pemisahan reruang dan masa telah digunakan untuk menubuhkan model
gandingan dinamik telaga melintang retak aliran takungan tirisan
dan retak. Keputusan kajian menunjukkan bahawa produktiviti pengiraan
model kelebaran berubah-ubah adalah lebih tinggi daripada model
dengan kelebaran tetap, namun perbezaan menjadi lebih kecil dengan
peningkatan masa. Disebabkan keretakan gangguan itu bersalingan,
penghasilan retak bahagian luar adalah lebih tinggi daripada retak
dalaman. Apabila konduktiviti retak tanpa dimensi adalah 0.1,
segmen tengah retak menguasai produktiviti dan puncak tempatan muncul
berhampiran telaga mendatar. Aliran dalam retakan adalah dengan
taburan jenis ‘dua U’. Semasa konduktiviti retak tanpa dimensi meningkat,
produktiviti retak terutamanya menerusi aliran hujung dan dalam
retak bersama dengan taburan jenis ‘U’. Dengan menggunakan model
peramalan produktiviti retak lebar pemboleh ubah yang ditubuhkan,
pengoptimuman kuantitatif bentuk retak boleh dicapai.
Kata kunci: Kelebaran retak pemboleh ubah; pengoptimuman kuantitatif
bentuk retak; produktiviti tak menentu; taburan fluks; telaga mendatar
yang retak
RUJUKAN
Al
Kobaisi, M., Ozkan, E. & Kazemi, H. 2006. A hybrid numerical/analytical
model of a finite conductivity vertical fracture intercepted by
a horizontal well. SPE Reservoir Evaluation & Engineering
9: 345-355.
Cinco,
L.H. & Samaniego, V.F. 1981. Transient pressure analysis for
fractured wells. Journal of Petroleum Technology 33: 1749-1766.
Cinco-L.,
H., Samaniego-V., F. & Dominguez A., N. 1978. Transient pressure
behavior for a well with a finite-conductivity vertical fracture.
Old SPE Journal 18(4): 253-264.
Giger,
F.M., Reiss, L.H. & Jourdan, A.P. 1984. The reservoir engineering
aspects of horizontal drilling. In SPE Annual Technical Conference
and Exhibition. Texas: Society of Petroleum Engineers.
Gringarten,
A. & Raghavan, R. 1975. Applied pressure analysis for fractured
wells. Journal of Petroleum Technology 27: 887-892.
Guo,
B. & Schechter, D. 1999. A simple and rigorous IPR equation
for vertical and horizontal wells intersecting long fractures. PETSOC-99-07-05.
Journal of Canadian Petroleum Technology 38(7).
Joshi
S. 1988. Augmentation of well productivity with slant and horizontal
wells. Journal of Petroleum Technology 40(6): 729-739.
Joshi,
S. 1987. A review of horizontal well and drainhole technology. SPE
Annual Technical Conference and Exhibition. Texas: Society of
Petroleum Engineers.
Larsen,
L. & Hegre, T. 1994. Pressure transient analysis of multifractured
horizontal wells. SPE Annual Technical Conference and Exhibition,
New Orleans, Louisiana, 25-28 September.
Larsen,
L. & Hegre, T. 1991. Pressure-transient behavior of horizontal
wells with finite-conductivity vertical fractures. International
Arctic Technology Conference, Anchorage, Alaska, 29-31 May.
Li,
Z.J., Pu, X.L., Wang, G., Cheng, Y. & Su, Y. 2013. A novel low-fluorescence
anti-sloughing agent for a drilling fluid system and its mechanism
analysis. Natural Gas Industry 33: 97-101.
Mukherjee,
H. & Economides, M. 1991. A parametric comparison of horizontal
and vertical well performance. SPE Formation Evaluation 6(2):
209-216.
Prats, M. 1961. Effect of vertical fractures on reservoir behavior-incompressible
fluid case. Society of Petroleum Engineers Journal 1(2):
105-118.
Raghavan, R., Cheng, C. & Bijan, A. 1997. An analysis of
horizontal wells intercepted by multiple fractures. SPE Journal
2(3): 235-245.
Raghavan, R. &
Joshi, S. 1993. Productivity of multiple drainholes or fractured
horizontal wells. SPE Formation Evaluation 8(1): 11-16.
Soliman, M.Y.,
Hunt, J.L. & El Rabaa, A.M. 1990. Fracturing aspects of horizontal
wells. Journal of Petroleum Technology 42(8): 966-973.
Sun, H., Yao, J.,
Lian, P.Q., Fan, D.Y. & Sun, Z.X. 2012. A transient reservoir/wellbore
coupling model for fractured horizontal wells with consideration
of fluid inflow from base rocks into wellbores. Acta Petrolei
Sinica 33(1): 117-122.
van Eekelen, H.A.M.
1982. Hydraulic fracture geometry: Fracture containment in layered
formations. Old SPE Journal 22(3): 341-349.
Wang, Z.M., Jin,
H. & Wei, J.G. 2009. Interpretation of the coupling model between
fracture variable mass flow and reservoir flow for fractured horizontal
wells. Journal of Hydrodynamics 24: 172-179.
Wei, Y. & Economides,
M.J. 2005. Transverse hydraulic fractures from a horizontal well.
SPE Annual Technical Conference and Exhibition, Dallas, Texas,
9-12 October.
Xiao, Y., Wang,
T.F., Zhao, J.Z., Hu, Y.Q. & Luo, Y. 2009. Computational model
of total stress filed while multiple fracturing. Oil Drilling
& Production Technology 2009(3): 90-93.
Yuan, Y.Z., Zhang,
L.H., Wang, J. & Pu, Y.W. 2009. A binomial deliverability equation
for horizontal gas wells in formations with nonlinear seepage flow
features. Oil & Gas Geology 2009(1): 122-126.
Zeng, F. &
Zhao, G. 2010. The optimal hydraulic fracture geometry under non-Darcy
flow effects. Journal of Petroleum Science and Engineering 72(1-2):
143-157.
*Pengarang untuk surat-menyurat; email:
zengfanhui023024@126.com
|