Sains Malaysiana 45(12)(2016): 1807–1814

http://dx.doi.org/10.17576/jsm-2016-4512-04

 

Kesan Penambahan Surfaktan Tak-Ionik kepada Kompleks Al(III)-Morin dalam Penentuan Aluminium (III) Akues secara Spektrofotometri

(Effect of Addition of Non-Ionic Surfactant to the A2l(III)-Morin Complex in Spectrophotometry Determination of Aqueous Aluminum(III))

 

FAIZ BUKHARI MOHD SUAH1*, MUSA AHMAD2,3 & LEE YOOK HENG2

 

1Pusat Pengajian Sains Kimia, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

 

2Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

3Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai

Negeri Sembilan Darul Khusus, Malaysia

 

Diserahkan: 1 Februari 2014/Diterima: 8 April 2016

 

ABSTRAK

Dalam kajian ini, kesan surfaktan tak-ionik terhadap kompleks Al(III)-morin telah dijalankan. Surfaktan tak-ionik didapati telah meningkatkan bacaan serapan kompleks Al(III)-morin. Penambahan triton X-100 kepada kompleks Al(III)-morin telah membolehkan penentuan ion Al(III) dalam kuantiti submikrogram pada pH4.00 dijalankan. Bacaan serapan maksimum adalah pada 425 nm dengan serapan molar, ε, 9.31 × 103 l.mol-1cm-1. Graf kalibrasi bagi penentuan ion Al(III) adalah linear daripada 0.03 hingga 2.0 μg mL-1 dengan had pengesanan 0.015 μg mL-1 telah diperoleh dalam kajian ini. Sisihan ralat relatif (r.s.d) ialah 2.2% bagi kepekatan Al(III) 1.0 μg mL-1. Kesan penambahan ion lain terhadap kompleks Al(III)-morin turut dijalankan dan didapati ion Cu(II), Zn(II) dan Pb(II) memberi gangguan yang lebih berbanding ion-ion lain.

 

Kata kunci: Interaksi kompleks logam-surfaktan; morin; penentuan aluminium; surfaktan tak-ionik; Triton X-100

 

ABSTRACT

The effect of surfactants on the Al(III)-morin complex have been studied. It was found that non-ionic surfactant noticeably enhances the absorbance of the Al(III)-morin complex. Determination of submicrogram quantities of Al(III) ion at pH4.00 was made possible by the addition of triton X-100. Maximum absorption was obtained at wavelength of 425 nm, with the calculated molar absorptivity, ε, of 9.31 × 103 l.mol-1.cm-1. A linear calibration curve of 0.03 to 2.0 μg mL-1 with the detection limit of 0.015 μg mL-1 was attained for determination of Al(III) ion. The calculated relative standard deviation (r.s.d) was 2.2% for Al(III) ion quantified at 1.0 μg mL-1. The influence of foreign ions towards the Al(III)-morin complex responses have been carried out too, with Cu(II), Zn(II) and Pb(III) were found to be the main interferences.

 

Keywords: Determination of aluminium; metal complex-surfactant interaction; morin; non-ionic surfactant; Triton X-100

RUJUKAN

Ahmed, M.J. & Hossan, J. 1995. Spectrophotometric determination of aluminium by morin. Talanta 42: 1135-1142.

Alarfaj, N.A. & El-Tohamy, F. 2015. Applications of micelle enhancement in luminescent-based analysis. Luminescence 30: 3-11.

Alonso, A., Almendral, M.J., Porras, M.J., Curto, Y. & De Maria, G.C. 2001. Flow-injection solvent extraction with and without phase separation: Fluorimetric determination of aluminium in water. Anal. Chim. Acta 447: 211-217.

Azimi, M., Nafissi-Varcheh, N., Mogharabi, M., Faramarzi, M.A. & Aboofazeli, R. 2016. Study of laccase activity and stability in the presence of ionic andnon-ionic surfactants and the bioconversion of indole in laccase-Tx-100 system. J. Mol. Catal. B: Enzym. 126: 69-75.

Carillo, F., Perez, C. & Camara, C. 1991. Sensitive spectrofluorimetric determination of aluminium(III) with Eriochrome Red B. Anal. Chim. Acta 243: 121-125.

Carrion Dominguez, J.L. & Cirugeda, M.D.L.G. 1987. Spectroscopic study of the aluminium/lumogallion system in the presence of non-ionic surfactants. Anal. Chim. Acta 198: 53-61.

Dean, J.A. 1989. Chemist Ready Reference Handbook. New York: McGraw-Hill.

Diaz Garcia, M.E. & Sanz-Medel, A. 1986. Dye-surfactant interactions: A review. Talanta 33: 255-264.

Ershova, N.I. & Ivanov, V.M. 2000. Application of chromaticity characteristics for direct determination of trace aluminum with Eriochrome cyanine R by diffuse reflection spectroscopy. Anal. Chim. Acta 408: 145-151.

Fletcher, P.D.I. & Robinson, B.H. 1984. The effect of organised surfactant systems on the kinetics of metal-ligand complex formation and dissociation. J. Chem. Soc. Faraday Trans. I 80: 2417-2437.

Fu-Sheng, W. & Fang, Y. 1983. Spectrophotometric determination of silver with cadion 2B and triton X-100. Talanta 30: 190-192.

Ghaedi, M. 2007. Elective and sensitized spectrophotometric determination of trace amounts of Ni(II) ion using α-benzyl dioxime in surfactant media. Spectrochim. Acta A 66: 295- 301.

Goto, K., Tamura, H., Onodera, M. & Nagayama, M. 1974. Spectrophotometric determination of aluminium with ferron and a quaternary ammonium salt. Talanta 21: 183-190.

Jarosz, M. & Malat, M. 1988. Spectrophotometric study of the formation of ternary complexes of iron(III) with some triphenylmethane dyes and cationic surfactants. Microchem. J. 37: 268-274.

Lobinski, R. & Marczenko, Z. 1992. Recent advances in ultraviolet-visible spectrophotometry. Crit. Rev. Anal. Chem. 23: 55-111.

Marczenko, Z. 1986. Separation and Spectrophotometric Determination of Elements. Chichester: Ellis Horwood Limited.

Miura, J. 1989. Masking agents in the spectrophotometric determination of metal ions with 2-(5-bromo-2-pyridylazo)- 5-diethylaminophenol and non-ionic surfactant. Analyst 114: 1323-1329.

Miyawaki, M. & Uesugi, K. 1985. Highly sensitive spectrophotometric determination of micro amounts of iron with chromai blue G and cetyltrimethylammonium chloride. Microchim. Acta I: 135-141.

Narin, I., Tuzen, M. & Soylak, M. 2004. Aluminium determination in environmental samples by graphite furnace atomic absorption spectrometry after solid phase extraction on Amberlite XAD-1180/pyrocatechol violet chelating resin. Talanta 63: 411-418.

Oter, O. & Aydogdu, S. 2011. Determination of aluminum ion with morin in a medium comprised by ionic liquid-water mixtures. J. Fluoresc. 21: 43-50.

Panhwar, Q.K., Memon, S. & Bhanger, M.I. 2010. Synthesis, characterization, spectroscopic and antioxidation studies of Cu(II)–morin complex. J. Mol. Struct. 967: 47-53.

Pereiro, M.R., Lopez, Diaz Garcia, M.E. & Sanz Medel, A. 1990. On-line aluminium pre-concentration and its application to the determination of the metal in dialysis concentrates by atomic spectrometric methods. J. Anal. At. Spectrom. 5: 15-19.

Petcu, A.R., Rogozea, E.A., Lazar, C.A., Olteanu, N.L., Meghea, A. & Mihaly, M. 2016. Specific interactions within micelle microenvironment in different charged dye/surfactant systems. Arab J. Chem. 9: 9-17.

Piñeiro, L., Mercedes, N. & Al-Soufi, W. 2015. Fluorescence emission of pyrene in surfactant solutions. Adv. Colloid Interface Sci. 215: 1-12.

Pramauro, E. & Pelizzetti, E. 1996. Surfactants in Analytical Chemistry: Applications of Organized Amphiphilic Media. New York: Elsevier.

Rao, T.P., Reddy, M.L.P. & Pillai, A.R. 1998. Application of ternary and multicomponent complexes to spectrophotometric and spectrofluorimetric analysis of inorganics. Talanta 46: 765-813.

Safavi, A., Mirzaee, M. & Abdollahi, H. 2003. Simultaneous spectrophotometric determination of iron, titanium, and aluminum by partial least-squares calibration method in micellar medium. Anal. Lett. 36: 699-712.

Sarzani, C., Mentarti, E., Porta, V. & Gennro, M.C. 1987. Comparison of anion-exchange methods for preconcentration of trace aluminum. Anal. Chem. 59: 484-486.

Shokrollahi, A., Ghaedi, M., Niband, M.S. & Rajabi, H.R. 2008. Selective and sensitive spectrophotometric method for determination of sub-micro-molar amounts of aluminium ion. J. Hazard. Mater. 151: 642-648.

Simoncic, B. & Kert, M. 2008. Influence of the chemical structure of dyes and surfactants on their interactions in binary and ternary mixture. Dyes & Pigments 76: 104-112.

Tan Ling Ling & Musa Ahmad. 2008. Penggunaan jaringan neural tiruan untuk analisis kuantitatif ion Al(III) berasaskan pengecaman corak spektrum serapan. Sains Malaysiana 37(1): 51-57.

Warner, I.M. & McGown, L.B. 1992. Molecular fluorescence, phosphorescence and chemiluminescence spectrometry. Anal. Chem. 64: 343R-352R.

Wolfson, A.D. & Gracey, G.M. 1987. Matrix effects in the determination of aluminium in dialysis fluids by graphite furnace atomic absorption spectrometry. Analyst 112: 1387- 1389.

 

 

*Pengarang untuk surat-menyurat; email: fsuah@usm.my

 

 

 

sebelumnya