Sains Malaysiana 45(12)(2016): 1905–1912
http://dx.doi.org/10.17576/jsm-2016-4512-15
Pergerakan Kadmium (Cd) melalui
Tanah Baki Granit Terpadat Menggunakan Kaedah Kolum Turasan Mini
(The Movement of Cadmium (Cd) through Compacted
Granitic Residual Soil using Mini Column Infiltration Technique)
NUR ‘AISHAH
ZARIME*
& WAN ZUHAIRI WAN
YAACOB
Program
Geologi, Pusat Pengajian Sains Sekitaran dan Sumber Alam, Fakulti
Sains & Teknologi
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan:
7 Jun 2016/Diterima: 11 Oktober 2016
ABSTRAK
Penyelidikan ini mengkaji tingkah
laku cadmium (Cd) melalui tanah baki granit yang dipadatkan. Sampel
tanah baki granit telah diambil di kawasan Broga, Selangor dan
dikaji menggunakan tiga kaedah ujian utama iaitu; ujian fizikal
(taburan saiz butiran, had-had Atterberg, graviti tentu, pemadatan
dan kebolehtelapan), ujian kimia (pH, bahan organik, luas permukaan
spesifik (SSA)
dan kadar pertukaran kation (CEC) serta ujian mini kolum turasan.
Melalui ujian kolum turasan, konsep kebolehtelapan turus menurun
digunakan yang melibatkan tiga faktor iaitu halaju/daya-G, ketebalan
sampel dan jenis larutan yang digunakan. Graf lengkung bulus menunjukkan
kepekatan Cd dalam tanah baki granit semakin meningkat dengan
peningkatan halaju. Urutan kapasiti penjerapan semakin meningkat
terhadap kadar putaran alat emparan/daya tarikan graviti (G);
230G>520G>920G>1440G. Pergerakan logam berat melalui
tanah baki juga meningkat dengan peningkatan halaju/daya-G. Lengkung
bulus juga menunjukkan pergerakan Cd secara songsang dengan ketebalan
lapisan tanah di dalam kolum. Masa penembusan bagi ketebalan 20
mm juga lebih lama berbanding ketebalan 15 dan 10 mm. Manakala
jumlah Cd yang terjerap oleh tanah baki granit dalam larutan campuran
adalah rendah berbanding larutan tunggal (masa yang singkat untuk
menembusi lengkung bulus). Tanah baki granit juga mempunyai kapasiti
penampanan yang rendah (pHfinal =
4 - 7). Kajian ini menunjukkan bahawa pencirian fiziko-kimia dan
sifat penjerapan tanah dengan menggunakan ujian mini kolum turasan
mempunyai kaitan yang kuat untuk mencirikan tanah baki granit
untuk dijadikan pelapik lempung tereka bentuk.
Kata kunci: Kadmium; lengkung
bulus; mini kolum turasan; tanah baki granit
ABSTRACT
This research investigates
the behaviour of cadmium (Cd) through compacted granite residual
soils. Granite residual soil (BGR) was collected in Broga, Selangor
and was subjected to three main test; physical test (particle
size distribution, Atterberg Limit, specific gravity, compaction
and permeability), chemical tests (pH, organic matter, specific
surface area (SSA)
and cation exchange capacity (CEC)) and mini column infiltration
test. Column test followed the falling head permeability concepts
where different g-force, samples thickness and different types
of solutions were used in this study. Breakthrough curves show
the concentration of Cd in granite residual soil becomes higher
with the increasing of g-force. The adsorption capacity is increasing
to the rotation rate of the centrifugal/gravity ranked as; 230G>520G>920G>1440G.
Mobility of Cd through granite residual soil also become higher
with increasing g-force. The breakthrough curves also showed that
mobility of Cd inversely correlated with the thickness of the
soil layer in the column. Penetration time through soil thickness
20 mm was longer than the 15 and 10 mm thickness. The amount of
Cd adsorbed by granite residual soil in mixture solutions was
lower than in single solution (less time to penetrate the breakthrough
curve). Granite residual soil also has low buffering capacity
(pHfinal = 4 - 7). The study concluded that
physical-chemical characterization and sorption properties of
soil using mini column infiltration test have very good linked
to characterize granite residual soils material to functions as
engineered clay liner.
Keywords: Breakthrough curve; cadmium; granite residual soil; mini
column infiltration test
RUJUKAN
Alemayehu, E. &
Lennartz, B. 2009. Virgin volcanic rocks: Kinetics and equilibrium
studies for the adsorption of cadmium from water. Journal of
Hazardous Materials 169(1-3): 395-401.
Alshaebi, F.Y.,
Zuhairi, W.Y.W. & Samsudin, A.R. 2010. Removal of arsenic
from contaminated water by selected geological natural materials.
Australian Journal of Basic & Appllied Science 4(9):
4413-4422.
Alther, G. 2002.
Using organoclays to enhance carbon filtration. Waste Management
22(5): 507-513.
Antoniadis, V.,
Mckinley, J.D. & Zuhairi, W.Y.W. 2007. Single-element and
competitive metal mobility measured with column infiltration and
batch tests. Journal of Environment Quality 60: 53-60.
Antoniadis, V.
& McKinley, J.D. 2000. Leaching tests in a laboratory centrifuge
on zinc migration in London Clay. International Symposium on
Physical Modelling and Testing in Environmental Geotechnics, France.
hlm. 50-58.
Atanassova, I.
1999. Competitive effect of copper, zinc, cadmium, and nickel
on ion adsorption and desorption by soil clays. Water Air Soil
Pollut. 113: 115-125.
Cawley, M.R. 1999.
Compacted Clay Liners: A Viable Solution for Landfill Leachate
Containment. Brigham Young University Provo, UT
Chalermyanont,
T., Arrykul, S. & Charoenthaisong, N. 2009. Potential use
of lateritic and marine clay soils as landfill liners to retain
heavy metals. Waste Management 29(1): 117-127.
Cheyns, K., Mertens,
J., Diels, J., Smolders, E. & Springael, D. 2010. Monod kinetics
rather than a first-order degradation model explains atrazine
fate in soil mini-columns: Implications for pesticide fate modelling.
Environmental Pollution 158(5): 1405-1411.
Devulapalli, S.S.N.
& Reddy, K.R. 1996. Effect of nonliner adsorption on contaminant
transport through landfill clay liners. Proc. 2nd International
Congress on Environmental Geotechnics, Osaka, Japan. hlm.
473-478.
Gordon, M.E., Huebner,
P.M. & Mitchell, G.R. 1990. Regulation, construction and performance
of clay-lined landfills in Wisconsin. In Waste Containment
Systems: Construction, Regulation, and Performance, Bonaparte,
R. (ed). American Society of Civil Engineers, Reston, VA. pp.
14-29.
Gupta, V.K., Suhas,
Nayak, A., Agarwal. S., Chaudhary, M. & Tyagi, I. 2014. Removal
of Ni (II) ions from water using scrap tire. Journal of Molecular
Liquids 190: 215-222.
Kim, Y., Kim, K.,
Kang, H., Kim, W., Doh, S., Kim, D. & Kim, B. 2007. The accumulation
of radiocesium in coarse marine sediment: Effects of mineralogy
and organic matter. Marine Pollution Bulletin 54: 1341-1350.
Kouame, I.K., Dibi,
B., Koffi, K., Savane, I. & Sandu, I. 2010. Statistical approach
of assessing horizontal mobility of heavy metals in the soil of
Akouedo Landfill nearby Ebrie Lagoon (Abidjan-Cote D’ivoire).
International Journal of Conservation Science 1(3): 149-160.
Kumar, P.R. 2006.
Contaminant transport through geotechnical centrifuge models.
Environmental Monitoring Assessment 177: 215-233.
Kyzio,
J. 2002. Effect of physical properties and cation exchange capacity
on sorption of heavy metals onto peats. Polish Journal of Environmental
Studies 11(6): 713-718.
Liew, C.Y. & Zuhairi, W.Y.W.
2010. The adsorption of lead, copper, zinc, cadmium, cobalt and
nickel in residual soils using batch and high speed centrifuge
mini column test. Seminar UKM-UNRI Ke-6. hlm. 463-465.
Markiewicz-Patkowska, J., Hursthouse,
A. & Przybyla-Kij, H. 2005. The interaction of heavy metals
with urban soils: Sorption behaviour of Cd, Cu, Cr, Pb and Zn
with a typical mixed brownfield deposit. Environment International
31: 513-521.
Mohan, D. & Singh, K.P. 2002.
Single- and multi-component adsorption of cadmium and zinc using
activated carbon derived from bagasse--an agricultural waste.
Water Research 36(9): 2304-2318.
Rosli, R., Karim, A.T.A., Latiff,
A.A.A. & Taha, M.R. 2008. Adsorption properties of As, Pb
and Cd in soft soil and meta-sedimentary residual soil. Engineering
Postgraduate Conference (EPC). hlm. 1-9.
Wan Zuhairi, W.Y & Abdul Rahim,
S. 2007. Sorption parameters of Pb and Cu on natural clay soils
from Selangor, Malaysia. Sains Malaysiana 36(2): 149-157.
Wang, S. & Nan, Z. 2009. Copper
sorption behavior of selected soils of the oasis in the middle
reaches of Heihe River Basin, China. Soil and Sediment Contamination
18(1): 74-86.
Xie, H., Chen, Y., Ke, H., Tang,
X. & Chen, R. 2009. Analysis of diffusion-adsorption equivalency
of landfill liner systems for organic contaminants. Journal
of Environmental Sciences 21(4): 552-560.
Yong, R.N., Zuhairi, W.Z.Y., Bentley,
S.P., Harris, C. & Tan, B.K. 2001. Partitioning of heavy metals
on soil samples from column tests. Engineering Geology 60:
307-322.
Zuhairi, W.Y.W., Samsudin, A.R.
& Kong, T.B. 2008a. The sorption distribution coefficient
of lead and copper on the selected soil samples from Selangor.
Bulletin of the Geological Society of Malaysia 54: 21-25.
Zuhairi, W.Y.W., Samsudin, A.R.
& Ridwan, N. 2008b. The retention characteristics of heavy
metals in natural soils using soil column experiment. The 12th
International Conference of International Association for Computer
Methods and Advances in Geomechanics (IACMAG), Goa, India,
1-6 October. hlm. 2405-2411.
*Pengarang untuk surat-menyurat;
email: aishahzarime@gmail.com