Sains Malaysiana 45(7)(2016): 1089–1095
Phylogenetic Relationships of Waders
(Charadriiformes: Scolopacidae)
in Sarawak Inferred from Cytochrome Oxidase I and Recombinant
Activating Gene 1
(Hubungan Filogenetik Burung Laut (Charadriiformers: Scolopacidae) di Sarawak yang Tersimpul
daripada Sitokrom
Oksidase I dan Rekombinan Gen Pengaktif 1)
NURUL ASHIKEEN
AB
RAZAK1*,
MUSTAFA
ABDUL
RAHMAN2
& ANDREW ALEK TUEN1
1Institute of Biodiversity and Environmental
Conservation, Universiti Malaysia Sarawak
94300Kota
Samarahan, Sarawak, Malaysia
2University College
Sabah Foundation, Jalan Sanzac,
88100 Sembulan, Kota Kinabalu,
Sabah Negeri di Bawah
Bayu, Malaysia
Diserahkan: 25 November 2014/Diterima:
30 Januari 2016
ABSTRACT
Family Scolopacidae
includes the sandpipers, shanks, snipes, godwits and curlews.
Systematic classifications of shorebirds at the higher level have
been successfully resolved. Nevertheless, the phylogeny of shorebirds
in the familial level is still poorly understood. Thus, this phylogenetic
study on Scolopacidae was conducted
upon the framework provided by the first sequence-based species-level
phylogeny within the shorebirds to determine the phylogenetic
relationships among family members of Scolopacidae
in West Borneo, Sarawak using combined gene markers, mtDNA Cytochrome
Oxidise I (COI) and nucDNA Recombinant
Activating Gene 1 (RAG1). A total of 1,342 base pair (bp) were inferred from both COI and
RAG1
gene from 45 sequences constituted of 15 species
Scolopacidae sampled from Sarawak namely Xenus cinereus, Actitis
hypoleucos, Tringa
totanus, Tringa glareola, Tringa stagnatilis, Heteroscelus brevipes, Calidris alba, Calidris ruficollis, Calidris ferruginea, Calidris tenuirostris, Calidris alpina, Gallinago stenura, Gallinago megala, Numenius arquata, and Numenius phaeopus. The phylogenetic
tree was constructed with Charadrius
mongulus derived as an
outgroup. The Bayesian Inference (BI) tree constructed supported grouping
of species into several lineages of Numeniinae,
Calidrinae, Scolopacinae
and Tringinae. The groupings of species
into several lineages correlate with morphological features that
contribute to their adaptation and ability of the species to fit
to their ecosystems.
Keywords: Cytochrome Oxidase
I; phylogenetic; Recombinant Activating Gene 1; waders
ABSTRAK
Famili Scolopacidae merangkumi
burung kedidi
biasa, burung kedidi
kaki merah, burung
berkek dan burung
kedidi kendi. Pengelasan
sistematik burung laut pada peringkat
lebih tinggi
telah berjaya diselesaikan.
Namun,
filogeni burung laut pada peringkat
famili masih
belum difahami. Sehubungan itu, kajian filogenetik
ke atas Scolopacidae
telah dijalankan
mengikut rangka kerja yang diberikan oleh filogeni berasaskan-urutan-pertama
aras-spesies dalam
kalangan burung laut untuk mengenal
pasti hubungan
filogenetik dalam kalangan family Scolopacidae di
barat Borneo, Sarawak, menggunakan
penanda molekul
berbeza; mtDNA Siktokrom Oksidase I (COI)
dan nucDNA Recombinan Gen Pengaktif 1 (RAG1).
Sejumlah 1,342 pasangan
asas (bp) diperoleh
daripada kedua-dua
jenis gen COI dan
RAG1
daripada 45 jujukan
merangkumi 15 spesies
Scolopacidae yang disampel dari Sarawak iaitu Xenus cinereus, Actitis
hypoleucos, Tringa
totanus, Tringa glareola, Tringa stagnatilis, Heteroscelus brevipes, Calidris alba, Calidris ruficollis, Calidris ferruginea, Calidris tenuirostris, Calidris alpina, Gallinago stenura, Gallinago megala, Numenius arquata dan Numenius phaeopus. Pokok filogenetik telah
dibina menggunakan
Charadrius mongulus sebagai kumpulan luar. Pokok Bayesian Inference (BI) yang dibina
menyokong perkumpulan
spesies mengikut keturunan masing-masing iaitu Numeniinae, Calidrinae, Scolopacinae dan Tringinae. Perkumpulan spesies kepada beberapa keturunan berkait rapat dengan
ciri morfologi
yang telah menyumbang kepada adaptasi dan kebolehan spesies
ini menyesuaikan
diri dalam ekosistem
mereka.
Kata kunci: Burung laut; filogenetik; Rekombinan Gen Pengaktif
1; Sitokrom Oksidase 1
RUJUKAN
Avise, J.C. 2004. Molecular Markers, Natural History, and Evolution. 2nd
ed. Sunderland, Massachusetts: Sinauer.
Baker,
A.J., Pereira, S.L. & Paton, T.A. 2007. Phylogenetic relationships
and divergence times of Charadriiformes
genera: multigene evidence for the Cretaceous origin of at least
14 clades of shorebirds. Biology Letters 3: 205-209.
Banks, J., van
Buren, A., Cherel, Y. & Whitfield,
J.B. 2006. Genetic evidence for three species
of Rockhopper Penguins Eudyptes
chrysocome. Polar
Biol. DOI 10.1007/s00300- 006-0160-3.
Barrett,
D. & Schluter, D. 2008. Adaptation from standing genetic variation. Trends in Ecology
& Evolution 23(1): 38-44.
Braun,
E.L. & Kimball, R.T. 2002. Examining basal avian divergences with
mitochondrial sequences: model complexity, taxon sampling and
sequence length. Syst. Biol. 51: 614-625.
Brown, W.M. 1983.
Evolution of animal mitochondrial DNA.
In Evolution of Genes and Proteins, edited by Nei,
M. & Koehn, R.K. Sunderland, Massachussets:
Sinauer Associates.
Clements,
J.F., Schulenberg, T.S., Iliff,
M.J., Sullivan, B.L. & Wood, C.L. 2010. The Clements
Checklist of Birds of the World: Version 6.5. New York: Cornell
University.
Cummings,
M.P., Otto S.P. & Wakeley, J. 1995. Sampling properties
of DNA sequence data in phylogenetic analysis. Mol. Biol. Evol. 12: 814-822.
Ericson,
P.G.P., Envall, I., Irestedt,
M. & Norman, J.A. 2003. Inter-familial relationships of the shorebirds
(Aves: Charadriiformes) based on nuclear
DNA sequence data. BMC Evol.
Biol. 3: 16.
Farris,
J.S., KaČ llersjoČ,
M., Kluge, A.G. & Bult, C. 1995. Constructing a significance test for incongruence. Syst.
Biol. 44: 570-572.
Gibson,
R. & Baker, A. 2012. Multiple gene sequences resolve phylogenetic relationships
in shorebird suborder Scolopaci (Aves:
Charadriiformes). Molecular Phylogenetics
and Evolution 64: 66-72.
Gibson, R. 2010.
Phylogenetic relationships among the Scolopaci
(Aves: Charadriiformes): Implications
for the study of behavioral evolution. M.Sc. Thesis. University
of Toronto (Unpublished).
Grewe,
P.M., Krueger, C.C., Aquadro, C.F.,
Bermingham, E., Kincaid, H.L. & May, B. 1993. Mitochondrial
variation among lake trout (Salvenilus
namaycush) strains stocked into Lake Ontario. Can. J. Fish. Aquat. Sci. 50: 2397-2403.
Groth,
J.G. & Barrowclough, G.F. 1999. Basal divergences in
birds and the phylogenetic utility of the nuclear RAG-1 gene.
Mol. Phylogenet. Evol. 12: 115-123.
Huelsenbeck,
J.P. & Ronquist, F. 2001. Mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics
17: 754-755.
Jehl Jr., J.R. 1968.
Relationships in the Charadrii (shorebirds):
a taxonomic study based on color patterns of the downy young.
Mem. San Diego Soc. Nat. Hist.
3: 1-54.
Kimura, M. 1980.
A simple method for estimating the evolutionary rate of base substitutions
through comparative studies of nucleotide sequences. Journal
of Molecular Evolution 16: 111-120.
Livezey, B.C. 2010. Progress and obstacles in the phylogenetics
of modern birds. In Evolution of Modern Birds, edited
by Dyke, G. & Chiappe, L.
Berkeley: University of California Press. pp. 117-145.
Mayr, G. 2011. The
phylogeny of Charadriii form birds (shorebirds
and allies) - reassessing the conflict between morphology and
molecules. Zool. J. Linn. Soc. 161: 916-934.
Myers, S. 2009.
A Field Guide to the Birds of Borneo. UK: New
Holland Publication.
Palumbi,
S.A., Martin, S., Romano, W.O., McMillan, L., Stice,
L. & Grabowski, G. 1991. The Simple Fool’s
Guide to PCR. Honolulu, HI: Department of Zoology and
Kewalo Marine Laboratory, Univ. of Hawaii.
Paton,
T.A. & Baker, A.J. 2006. Sequences from 14 mitochondrial genes
provide a well-supported phylogeny of the charadriiform
birds congruent with the nuclear RAG-1 tree. Molecular Phylogenetics
and Evolution 39: 657-667.
Paton,
T.A., Baker, A.J., Groth, J.G. &
Barrowclough, G.F. 2003.
RAG-1 sequences resolve phylogenetic relationships within Charadriiform
birds. Mol. Phylogenet
Evol. 29(2): 268-278.
Pereira,
S.L. & Baker, A.J. 2005. Multiple gene evidence for parallel evolution
and retention of ancestral morphological states in the shanks
(Charadriiformes: Scolopacidae).
Condor 107: 514-526.
Pereira,
S.L., Baker, A.J. & Wajntal, A.
2002. Combined nuclear
and mitochondrial DNA sequences resolve generic relationships
within the Cracidae (Galliformes
Aves). Syst. Biol. 51: 946-958.
Rosenberg,
N.A. & Feldman, M.W. 2001. The Relationship
between Coalescence Times and Population Divergence Times.
Modern Developments in Theoretical Population Genetics. Oxford: Oxford University Press.
Saitou,
N. & Nei, M. 1987. The neighbor-joining method - a new method for reconstructing phylogenetic
trees. Mol. Biol. Evol. 4:
406-425.
Sibley,
C. & Ahlquist, J. 1990. Phylogeny and
Classification of Birds: A Study in Molecular Evolution. New
Haven: Yale University Press.
Smythies,
B. 1999.
The Birds of Borneo. 4th
ed. Kota Kinabalu: Natural History Publications Borneo.
Swofford,
D.L. 2002.
PAUP*. Phylogenetic
Analysis Using Parsimony (*and Other Methods). Version
4. Massachusetts: Sinauer Associates.
Tamura,
K., Peterson, D., Peterson, N., Stecher,
G., Nei, M. & Kumar, S. 2011. MEGA 5: Molecular
evolutionary genetics analysis using maximum likelihood, evolutionary
distance, and maximum parsimony methods. Molecular Biology
and Evolution 28: 2731-2739.
Thomas, G.H., Wills,
M.A. & Székely, T. 2004. A super tree approach to shorebird phylogeny. BioMed Central Evolutionary Biology 4: 1-18.
Thompson,
J.D., Gibson, T.J. & Plewniak, F.
1997. The clustal X windows interface: Flexible strategies for multiple
sequence alignment aided by the quality analysis tools. Nucleic
Acids Res. 24: 4876-4882.
Weibel,
A.C. & Moore, W.S. 2002. Molecular phylogeny of a cosmopolitan
group of woodpeckers (genus Picoides)
gased on COI and cyt b mitochondrial
gene sequences. Mol. Phylogenet.
Evol. 22:
65-75.
*Pengarang untuk surat-menyurat; email: ekinrazak@gmail.com