Sains Malaysiana 46(10)(2017): 1749–1756
http://dx.doi.org/10.17576/jsm-2017-4610-11
Pengoptimumam Pemprosesan Komposit rHDPE Berpenguat Sekam Padi dengan Kaedah
Tindak Balas
Permukaan (RSM)
(Optimization of rHDPE Reinforced Rice Husk Composite
Processing by Response Surface Method (RSM))
NISHATA ROYAN
RAJENDRAN
ROYAN*,
ABU
BAKAR
SULONG,
NOR
YULIANA
YUHANA,
MOHD
HAFIZUDDIN
AB
GHANI
& SAHRIM AHMAD
Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Fakulti Sains dan Teknologi,
Universiti Kebangsaan Malaysia, 43600
UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan: 24 Mac 2017/Diterima: 9 Jun 2017
ABSTRAK
Kaedah tindak balas
permukaan (RSM) telah
digunakan untuk
mengoptimumkan penyediaan biokomposit rHDPE berpenguat sekam padi sebagai pengisi. Sekam padi adalah sisa
pertanian yang mempunyai
ciri-ciri kayu dan digunakan secara
pesat dalam
bidang komposit kayu plastik. Kesan parameter suhu, tekanan serta masa proses tekanan panas ke
atas kekuatan
tegangan telah dikaji. Reka bentuk Box Bechken
telah digunakan
untuk menentukan parameter optimum
biokomposit yang mempunyai
kekuatan tegangan
yang tinggi. Model tertib
kedua telah
dibangunkan untuk meramalkan kekuatan tegangan berdasarkan reka bentuk komposit.
Didapati
bahawa komposit sesuai digunakan apabila model regresi kuadratik dengan pekali penentu bilang (R2) yang tinggi.
Keadaan proses menekan
yang optimum dicapai pada
suhu 180°C, tekanan 1000 psi dan masa 9 min dengan pekali penentu berbilang mencapai 97%. Di bawah keadaan
yang optimum ini, komposit
yang mengandungi 10, 20, 30, 40 dan
50% gentian RH telah disediakan.
Kekuatan
tegangan dan modulus tegangan biokomposit menunjukkan peningkatan apabila kandungan gentian RH
ditambah.
Kata kunci:
Biokomposit; kaedah
tindak balas permukaan;
kekuatan tegangan;
pengoptimuman; sekam padi
ABSTRACT
In this study, response surface
methodology (RSM) was used to optimize preparation of biocomposites based on rHDPE and
rice husk (RH) filler. RH is an agriculture waste which
has the characteristic of wood and being used tremendously in
wood plastic composites. The effects of pressing temperature,
pressing pressure and pressing time on tensile strength were investigated.
A Box Bechken design was employed to
determine the optimum preparation condition of the biocomposites to obtain the highest tensile strength. A second-order
polynomial model was developed for predicting the tensile strength
based on the composite design. It was found that composites were
best fit by a quadratic regression model with high coefficient
of determination (R2)
value. The selected optimum pressing condition was 180°C at 1000
psi and 9 min of pressing, leading to a desirability of 97%. Under
the optimum condition, the composites were then prepared containing
10, 20, 30, 40 and 50 wt. % of RH
fibers. The tensile strength and the tensile modulus
of the biocomposites shows
a good trend, respectively.
Keywords: Biocomposite; optimization; response surface methodology;
rice husk; tensile strength
RUJUKAN
Adhikary, K.B.,
Pang, S. & Staiger, M.P. 2008a. Dimensional stability and mechanical behaviour
of wood-plastic composites based on recycled and virgin high-density
polyethylene (Hdpe). Composites
Part B: Engineering 39(5): 807-815.
Ashori, A.
2008. Wood-plastic composites as promising green-composites for automotive
industries! Bioresour. Technol. 99(11): 4661-4667.
Askeland, D.R.,
Fulay, P.P. & Wright, W.J. 2010. The Science and Engineering of Materials. Stamford:
Cengage Learning Inc.
Chang, B.P., Akil, H.M., Affendy, M.G., Khan, A. & Nasir, R.B.M. 2014. Comparative study of wear performance of particulate and fiber-reinforced
nano-Zno/ultra-high molecular weight
polyethylene hybrid composites using response surface methodology.
Materials & Design 63: 805-819.
Chen, R.S., Ghani, M.H.A., Ahmad, S., Salleh,
M.N. & Tarawneh, M.A.A. 2015. Rice
husk flour biocomposites based on recycled
high-density polyethylene/polyethylene terephthalate blend: Effect
of high filler loading on physical, mechanical and thermal properties.
Journal of Composite Materials 49(10): 1241-1253.
Duy Tran, T., Dang Nguyen, M., Thuc, C., Thuc, H.H. & Dang Tan, T. 2013. Study
of mechanical properties of composite material based on polypropylene
and Vietnamese rice husk filler. Journal of Chemistry
2013: Article ID. 752924.
Ghani,
M.H.A., Salleh, M.N., Chen, R.S., Ahmad,
S., Hanafi, I., Royan, N.R.R. &
Idris, M.N. 2016. Kajian sifat mekanik nanokomposit
epoksi berpenguat
gentian hibrid nantoanotiub karbon dan nanozarah
tanah liat.
Sains Malaysiana 45(8):
1259-1263.
Grozdanov, A.,
Buzarovska, A., Bogoeva-Gaceva,
G., Avella, M., Errico, M. & Gentille,
G. 2006. Rice straw as an alternative reinforcement in
polypropylene composites. Agronomy for Sustainable Development
26(4): 251.
Hamid,
M.R.Y., Ab Ghani, M.H. & Ahmad, S. 2012. Effect of antioxidants
and fire retardants as mineral fillers on the physical and mechanical
properties of high loading hybrid biocomposites
reinforced with rice husks and sawdust. Industrial Crops and
Products 40: 96-102.
Li, R., Ye, L. & Mai, Y.W. 1997. Effect
of polyethylene particle geometry on mechanical properties of
compression moulded wood-polyethylene
composites. Plastics Rubber and Composites Processing and Applications
26(8): 368-371.
Lv, C., Wang, Y., Wang,
L.J., Li, D. & Adhikari, B. 2013. Optimization
of production yield and functional properties of pectin extracted
from sugar beet pulp. Carbohydrate Polymers 95(1): 233-240.
Miguez Suarez,
J.C., Coutinho, F.M.B. & Sydenstricker, T.H. 2003. Sem studies of tensile fracture surfaces
of polypropylene-sawdust composites. Polymer Testing 22(7):
819-824.
Najafi, A.
& Khademi-Eslam, H. 2011. Lignocellulosic
filler/ recycled Hdpe composites: Effect
of filler type on physical and flexural properties. BioResources
6(3): 2411-2424.
Nourbakhsh, A.,
Baghlani, F.F. & Ashori,
A. 2011. Nano- Sio2 filled rice husk/polypropylene composites: Physico-mechanical properties. Industrial Crops and Products
33(1): 183-187.
Premalal, H.G.B.,
Ismail, H. & Baharin, A. 2002. Comparison
of the mechanical properties of rice husk powder filled polypropylene
composites with talc filled polypropylene composites. Polymer
Testing 21(7): 833-839.
Selke, S.E. & Wichman, I. 2004. Wood
fiber/polyolefin composites. Composites Part A: Applied Science
and Manufacturing 35(3): 321-326.
Syafri, R.,
Ahmad, I. & Abdullah, I. 2011. Effect of rice husk
surface modification by Lenr the on
mechanical properties of Nr/Hdpe
reinforced rice husk composite. Sains
Malaysiana 40(7): 749-756.
Tong, J.Y., Royan, N.R.R., Ng, Y.C., Ab
Ghani, M.H. & Ahmad, S. 2014. Study of
the mechanical and morphology properties of recycled Hdpe
composite using rice husk filler. Advances in Materials
Science and Engineering 2014: Article ID 938961.
Wang, X., Sun, H., Bai, H. & Zhang, L.P. 2014. Thermal,
mechanical, and degradation properties of nanocomposites prepared
using lignin-cellulose nanofibers and poly (lactic acid). BioResources
9(2): 3211-3224.
Yam,
K.L., Gogoi, B.K., Lai, C.C. & Selke,
S.E. 1990. Composites from compounding wood fibers with recycled high density
polyethylene. Polymer Engineering & Science 30(11):
693-699.