Sains Malaysiana 46(10)(2017): 1789–1795

http://dx.doi.org/10.17576/jsm-2017-4610-16

 

Aplikasi Hidrogel daripada Selulosa Bakteria (BC-g-PAA) sebagai Nanoreaktor bagi Menghasilkan Nanozarah Ferum Oksida (FeNps)

(A Novel Application of Bacterial Cellulose Hydrogel (BC-g-PAA) as a Nanoreactor

to Produce Ferum Oxide Nanoparticle (FeNps))

MELLISSA ANDARINI1, MARYAM MOKHTAROM1, BOHARI M. YAMIN1, M. CAIRUL IQBAL M. AMIN2, IZZATI HASSAN1 & AZWAN MAT LAZIM1*

 

1Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Fakulti Farmasi, Universiti Kebangsaan Malaysia,, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan, Malaysia

 

Diserahkan: 10 Jun 2017/Diterima: 21 September 2017

 

ABSTRAK

Tujuan kajian ini adalah untuk mengkaji kebolehan hidrogel daripada selulosa bakteria (BC-g-PAA) sebagai pembawa bagi menghasilkan nanozarah ferum oksida (FeNps). Hidrogel selulosa telah disintesis menggunakan kaedah pempolimeran radikal bebas. Secara umum, kaedah pempolimeran radikal bebas ialah pempolimeran berantai (pempolimeran berion), dengan monomer radikal bebas menyerang monomer lain yang ikatannya berganda sehingga membentuk rantai dan akan melebarkannya. Nanozarah ferum oksida (FeNps) telah dihasilkan melalui gabungan antara 1 × 10-4 g/mL garam ferosenium ke dalam sistem hidrogel, seterusnya agen penurun natrium oksida (NaOH) dengan kepekatan 1 M digunakan untuk mendapatkan zarah. Hidrogel di dalam larutan penimbal pada pH10 ialah yang mempunyai nisbah pembengkakan tertinggi. Keputusan FTIR menunjukkan bahawa asid akrilik (AA) berjaya dicangkukkan pada jaringan selulosa bakteria (SB). Imej hidrogel telah dicirikan melalui analisis mikroskopi elektron imbasan (SEM), diikuti oleh spektroskopi tenaga serakan X-ray (SEM-EDX) dalam penentuan peratusan elemen ferum (Fe). Nanozarah berhasil diperolah selepas hidrogel dikalsinkan, seterusnya zarah tersebut diuji melalui mikroskopi transmisi elektron (TEM) dan pembelauan sinar-X (XRD). Analisis TEM menunjukkan diameter zarah berukuran 5 - 20 nm. Keputusan XRD mengesahkan bahawa zarah yang diperoleh ialah ferum oksida (Fe3O4) yang terletak pada puncak 2θ; 32°, 35°, 49° and 54°. Semua keputusan yang diperoleh menunjukkan bahawa hidrogel berasaskan selulosa bakteria berjaya digunakan sebagai nanoreaktor untuk menghasilkan nano zarah ferum oksida (FeNps).

 

Kata kunci: Ferosenium; hidrogel; nanoreaktor; selulosa bakteria (SB)

 

ABSTRACT

The aim of this study was to investigate the feasibility of bacterial cellulose hydrogel (BC-g-PAA) as a nanoreactor to produce ferum oxide nanoparticles (FeNps). The bacterial cellulose hydrogel was synthesized by using free radical polymerization method. In general, free radical polymerization method is a type of chain polymerization (like ionic polymerization), where free radical monomer attacks double bond of another monomer to form bond and propagate the free radical. Ferum oxide nanoparticles (FeNps) were produced by incorporating 1×10-4 g/mL ferrocenium salt (Fe+ Cl-) into the hydrogel cellulose system and reduced using 1M concentration of sodium hydroxide (NaOH). The highest swelling ratio was observed at basic buffer solution (pH10). The FTIR analysis was also conducted to confirm the grafting of acrylic acid (AA) onto bacteria cellulose backbone. Hydrogel was characterized by using scanning electron microscopy (SEM) followed by energy dispersive X-ray spectroscopy (SEM-EDEX) to determine the iron (Fe) percentage. The resulting nanoparticles were extracted from hydrogel after calcination process, further analysed by using transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). Analysis TEM showed the diameter of particles ranges from 5-20 nm. XRD examination confirmed that the ferum oxide particles (Fe3O4) were located 2θ; 32°, 35°, 49° and 54°. The result demonstrate the feasibility of using bacterial cellulose hydrogel as promising as nanoreactor to produced ferum oxide nanoparticles (FeNps).

Keyword: Bacteria cellulose (BC); ferrocenium; hydrogel; nanoreactor

RUJUKAN

Aber, M.M., Amin, M.C.I.M., Lazim, A.M., Pandey, M. & Martin, C. 2014. Synthesis of a novel acrylated abietic acig-g-bacterial cellulose hydrogel by gamma irradiation. Carbohydrate Polymers 110: 505-512.

Akbar, S., Hasanain, S.K., Azmat, N. & Nadeem, M. 2004. Synthesis of Fe2O3 nanoparticle by new sol-gel method and their structural and magnetic characterizations. Condensed Matter 480: 1-19.

Bitterwolf, T.E. & Ling, A.C. 1972. Ring tilt and restricted rotation in protonated alkylferrocenes. Journal of Organometallic Chemistry 40: 197-203.

Cairul, M., Naveed, A., Halib, N. & Ahmad, I. 2012. Syhnthesis and characterization of thermo and pH responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydrate for Drug Delivery 88: 465-473.

Chen, Q.W., Qian, Y.T., Chen, Z.Y., Xie, Y., Zhou, G.E. & Zhang, Y.H. 1995. Hydrothermal deposition of magnetite Fe3O4 thin films. Materials Letter 24: 85-87.

Chertok, B., Moffat, B.A., David, A.E., Yu, F., Bergemann, C., Ross, B.D. & Yang, V.C. 2008. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29: 487-496.

Chunyu, C., Bo, D., Jie, C. & Lina, Z. 2010. Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. European Polymer Journal 46: 92-100.

Cornell, R.M. & Scwertmann, U. 2003. The Iron Oxide: Structure, Properties, Reaction, Occurences and Uses. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

Hakam, A., Rahman, I.A., Jamil, M.S., Othaman, R., Amin, M.C.I. & Lazim, A.M. 2015. Removal of methylene blue dye in aqueous solution by sorption on a bacterial-g-poly(acrylic acid) polymer network hydrogel. Sains Malaysiana 44(6): 827-834.

Hendrickson, D.N., Sohn, Y.S. & Gray, H.B. 1971. Electronic structure of metallocenes. Journal of the America Chemical Society 93(15): 3603-3612.

Hua, J., Wei, K., Zheng, Q. & Lin, X. 2004. Influence of calcination temperature on the surface and catalytic performance of Au/iron oxide for water shift-gas shift reaction. Applied catalyst 252: 121-130.

Hong, D., Snyder, J.F., Trans, D.T. & Leadore, J.L. 2013. Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles. Carbohydrate Polymer 95: 760-767.

Johari, N.S., Ahmad, I. & Halib, N. 2012. Comparison study of hydrogel properties synthesized with micro- and nano- size bacterial cellulose particles extracted from nata de coco. Chem. Biochem. Eng. 26(4): 399-404.

Kurland, H.D., Grabow, J., Staupendahl, G., Müller, F.A., Müller, E., Dutz, S. & Bellemann, M.E. 2009. Magnetic iron oxide nanopowders produced by CO2 evaporation - ‘In situ’ coating and particle embedding in a ceramic matrix. Journal of Magnetism and Magnetic Material 321(10): 1381-1385. Proceedings of the Seventh International Conference n the Scientific and Clinical Applications of Magnetic Carriers, Vancouver, British Columbia, Canada. 20-24 May 2008.

Lim, S.L., Ahmad, I. & Lazim, A.M. 2015. pH sensitive hydrogel based on poly(acrylic acid) and cellulose nanocrystals. Sains Malaysiana 44(6): 779-785.

Liew, M., Othaman, R., Khalid, R., Amin, M.C.I. & Lazim, A.M. 2014. Sintesis hidrogel berasaskan nata de coco dengan asid akrilik sebagai ko-monomer menggunakan kaedah pempolimeran radikal bebas. Malaysian Journal of Analytical Science 18(2): 299-305.

Murali, Y.M., Vimala, K., Thomas, V., Varaprasad, K., Shredaar, B., Bajpai, S.K. & Raju, K.M. 2010. Controlling of silver nanoparticle structure by hydrogel network. Journal of Colloid and Interface Science 342: 73-82.

Murali, Y.M., Kyungjae, L., Thathan, P. & Kurt, E.G. 2007. Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial application. Polymer 48: 158-164.

Raj, K. & Moskovitz, K. 1990. Commercial applications of ferrofluids. Journal of Magnetism and Magnetic Materials 85: 233-245.

Richardson, D.R. & Ponka, P. 1995. Identification of a mechanism of iron uptake by cells which is stimulated by hydroxyl radicals generated via the iron catalysed Haber-Weiss reaction. Molecular Cell Research 1269: 105-114.

Sirajuddin, N.A., Jamil, M.M.S. & Lazim, A.M. 2015. Effect of pH buffer self-healing hydrogel. Malaysian Journal of Analytical Science 19(2): 445-453.

Varghese, J.M., Ismail, Y.A., Chang, K.L., Kwang, M.S., Min, K.S., Sun, I.K., Insuk, S.S. & Seon, J.K. 2008. Thermoresponsive hydrogels based on poly(N-isopropylacrylamide)/chondroitin sulfate. Sensors and Actuators B: Chemical 135: 336-341.

Yamin, B.M., Suwandi, S.A., Sivakumar, K. & Shawkatly, O.B. 1996. A triclinic form of dipyrrolidylthiuram disulphide. Acta Crystal 52: 1966-1968.

 

 

*Pengarang untuk surat-menyurat; email: azwanlazim@ukm.edu.my

 

 

 

 

sebelumnya