Sains Malaysiana 46(10)(2017):
1789–1795
http://dx.doi.org/10.17576/jsm-2017-4610-16
Aplikasi Hidrogel
daripada Selulosa
Bakteria (BC-g-PAA)
sebagai Nanoreaktor
bagi Menghasilkan Nanozarah Ferum Oksida (FeNps)
(A Novel Application
of Bacterial Cellulose Hydrogel (BC-g-PAA) as a Nanoreactor
to Produce
Ferum Oxide Nanoparticle (FeNps))
MELLISSA ANDARINI1, MARYAM
MOKHTAROM1,
BOHARI
M.
YAMIN1,
M.
CAIRUL
IQBAL
M.
AMIN2,
IZZATI
HASSAN1
& AZWAN MAT LAZIM1*
1Pusat Pengajian Sains Kimia dan Teknologi Makanan,
Fakulti Sains
dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Fakulti Farmasi, Universiti Kebangsaan Malaysia,, Jalan Raja
Muda Abdul Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan, Malaysia
Diserahkan: 10 Jun 2017/Diterima: 21 September 2017
ABSTRAK
Tujuan kajian ini adalah untuk mengkaji
kebolehan hidrogel
daripada selulosa bakteria (BC-g-PAA)
sebagai pembawa bagi menghasilkan nanozarah ferum oksida (FeNps). Hidrogel selulosa telah
disintesis menggunakan
kaedah pempolimeran radikal bebas. Secara umum, kaedah
pempolimeran radikal
bebas ialah pempolimeran
berantai (pempolimeran
berion), dengan monomer radikal bebas menyerang
monomer lain yang ikatannya berganda
sehingga membentuk
rantai dan akan melebarkannya. Nanozarah ferum oksida (FeNps) telah dihasilkan melalui gabungan antara 1 × 10-4 g/mL
garam ferosenium
ke dalam sistem
hidrogel, seterusnya
agen penurun natrium
oksida (NaOH)
dengan kepekatan 1 M digunakan untuk mendapatkan zarah. Hidrogel di dalam larutan penimbal
pada pH10 ialah
yang mempunyai nisbah pembengkakan tertinggi. Keputusan FTIR
menunjukkan bahawa
asid akrilik
(AA)
berjaya dicangkukkan
pada jaringan selulosa
bakteria (SB). Imej hidrogel
telah dicirikan
melalui analisis mikroskopi elektron imbasan (SEM), diikuti
oleh spektroskopi
tenaga serakan X-ray (SEM-EDX)
dalam penentuan
peratusan elemen ferum (Fe). Nanozarah berhasil diperolah
selepas hidrogel
dikalsinkan, seterusnya zarah tersebut diuji melalui mikroskopi
transmisi elektron
(TEM)
dan pembelauan
sinar-X (XRD). Analisis TEM
menunjukkan diameter zarah berukuran 5 - 20 nm. Keputusan
XRD
mengesahkan bahawa
zarah yang diperoleh
ialah ferum oksida
(Fe3O4) yang terletak
pada puncak
2θ; 32°, 35°, 49° and 54°. Semua keputusan yang diperoleh
menunjukkan bahawa
hidrogel berasaskan selulosa bakteria berjaya digunakan sebagai nanoreaktor untuk menghasilkan nano zarah ferum
oksida (FeNps).
Kata kunci: Ferosenium; hidrogel; nanoreaktor; selulosa bakteria (SB)
ABSTRACT
The aim of this study
was to investigate the feasibility of bacterial cellulose hydrogel
(BC-g-PAA)
as a nanoreactor to produce ferum
oxide nanoparticles (FeNps). The bacterial
cellulose hydrogel was synthesized by using free radical polymerization
method. In general, free radical polymerization method is a type
of chain polymerization (like ionic polymerization), where free
radical monomer attacks double bond of another monomer to form
bond and propagate the free radical. Ferum oxide nanoparticles (FeNps)
were produced by incorporating 1×10-4 g/mL
ferrocenium salt (Fe+ Cl-)
into the hydrogel cellulose system and reduced using 1M concentration
of sodium hydroxide (NaOH). The highest
swelling ratio was observed at basic buffer solution (pH10). The
FTIR analysis
was also conducted to confirm the grafting of acrylic acid (AA)
onto bacteria cellulose backbone. Hydrogel was characterized by
using scanning electron microscopy (SEM) followed by energy dispersive X-ray spectroscopy (SEM-EDEX)
to determine the iron (Fe) percentage. The resulting nanoparticles
were extracted from hydrogel after calcination process, further
analysed by using transmission electron
microscopy (TEM)
and X-ray diffraction analysis (XRD). Analysis TEM showed
the diameter of particles ranges from 5-20 nm. XRD examination
confirmed that the ferum oxide particles
(Fe3O4)
were located 2θ; 32°, 35°, 49° and 54°. The result demonstrate
the feasibility of using bacterial cellulose hydrogel as promising
as nanoreactor to produced ferum oxide
nanoparticles (FeNps).
Keyword: Bacteria cellulose (BC);
ferrocenium; hydrogel; nanoreactor
RUJUKAN
Aber, M.M., Amin, M.C.I.M., Lazim, A.M.,
Pandey, M. & Martin, C. 2014. Synthesis of a novel acrylated abietic acig-g-bacterial cellulose
hydrogel by gamma irradiation. Carbohydrate Polymers
110: 505-512.
Akbar, S., Hasanain, S.K., Azmat, N. & Nadeem, M. 2004. Synthesis of Fe2O3
nanoparticle by new sol-gel method and their structural
and magnetic characterizations. Condensed Matter 480:
1-19.
Bitterwolf, T.E. & Ling, A.C. 1972. Ring
tilt and restricted rotation in protonated alkylferrocenes.
Journal of Organometallic Chemistry 40: 197-203.
Cairul, M., Naveed, A., Halib, N. & Ahmad,
I. 2012. Syhnthesis and characterization of thermo and pH responsive
bacterial cellulose/acrylic acid hydrogels for drug delivery.
Carbohydrate for Drug Delivery 88: 465-473.
Chen, Q.W., Qian, Y.T., Chen, Z.Y., Xie,
Y., Zhou, G.E. & Zhang, Y.H. 1995. Hydrothermal deposition of magnetite Fe3O4
thin films. Materials Letter 24: 85-87.
Chertok, B., Moffat, B.A., David, A.E., Yu, F., Bergemann,
C., Ross, B.D. & Yang, V.C. 2008. Iron
oxide nanoparticles as a drug delivery vehicle for MRI monitored
magnetic targeting of brain tumors. Biomaterials 29: 487-496.
Chunyu, C., Bo, D., Jie, C. & Lina, Z. 2010. Superabsorbent hydrogels based on cellulose for smart swelling and
controllable delivery. European Polymer Journal 46: 92-100.
Cornell, R.M. & Scwertmann, U. 2003. The Iron Oxide: Structure, Properties, Reaction, Occurences and Uses. Weinheim:
Wiley-VCH Verlag GmbH & Co. KGaA.
Hakam, A., Rahman, I.A., Jamil, M.S., Othaman,
R., Amin, M.C.I. & Lazim, A.M. 2015. Removal of methylene blue dye in aqueous solution by sorption on
a bacterial-g-poly(acrylic acid) polymer
network hydrogel. Sains Malaysiana
44(6): 827-834.
Hendrickson, D.N., Sohn, Y.S. & Gray,
H.B. 1971. Electronic
structure of metallocenes. Journal
of the America Chemical Society 93(15): 3603-3612.
Hua, J., Wei, K., Zheng, Q. & Lin, X. 2004. Influence of calcination temperature on the surface and catalytic
performance of Au/iron oxide for water shift-gas shift reaction.
Applied catalyst 252: 121-130.
Hong, D., Snyder, J.F., Trans, D.T. & Leadore,
J.L. 2013. Hydrogel, aerogel and film of cellulose
nanofibrils functionalized with silver
nanoparticles. Carbohydrate Polymer 95: 760-767.
Johari, N.S.,
Ahmad, I. & Halib, N. 2012. Comparison
study of hydrogel properties synthesized with micro- and nano-
size bacterial cellulose particles extracted from nata
de coco. Chem. Biochem. Eng. 26(4):
399-404.
Kurland,
H.D., Grabow, J., Staupendahl,
G., Müller, F.A., Müller, E., Dutz,
S. & Bellemann, M.E. 2009. Magnetic iron oxide nanopowders produced by CO2 evaporation - ‘In situ’ coating
and particle embedding in a ceramic matrix. Journal of Magnetism
and Magnetic Material 321(10): 1381-1385. Proceedings
of the Seventh International Conference n
the Scientific and Clinical Applications of Magnetic Carriers,
Vancouver, British Columbia, Canada. 20-24 May 2008.
Lim,
S.L., Ahmad, I. & Lazim, A.M. 2015. pH
sensitive hydrogel based on poly(acrylic acid) and cellulose nanocrystals.
Sains Malaysiana 44(6):
779-785.
Liew, M.,
Othaman, R., Khalid, R., Amin, M.C.I.
& Lazim, A.M. 2014. Sintesis hidrogel
berasaskan nata
de coco dengan asid
akrilik sebagai ko-monomer menggunakan kaedah pempolimeran radikal bebas. Malaysian
Journal of Analytical Science 18(2): 299-305.
Murali, Y.M., Vimala, K., Thomas, V., Varaprasad,
K., Shredaar, B., Bajpai,
S.K. & Raju, K.M. 2010. Controlling of silver
nanoparticle structure by hydrogel network. Journal
of Colloid and Interface Science 342: 73-82.
Murali, Y.M.,
Kyungjae, L., Thathan,
P. & Kurt, E.G. 2007. Hydrogel networks as nanoreactors:
A novel approach to silver nanoparticles for antibacterial application.
Polymer 48: 158-164.
Raj,
K. & Moskovitz, K. 1990. Commercial applications of ferrofluids. Journal of Magnetism and Magnetic Materials
85: 233-245.
Richardson, D.R. &
Ponka, P. 1995. Identification of a
mechanism of iron uptake by cells which is stimulated by hydroxyl
radicals generated via the iron catalysed
Haber-Weiss reaction. Molecular Cell Research 1269: 105-114.
Sirajuddin, N.A.,
Jamil, M.M.S. & Lazim, A.M. 2015. Effect
of pH buffer self-healing hydrogel. Malaysian Journal
of Analytical Science 19(2): 445-453.
Varghese,
J.M., Ismail, Y.A., Chang, K.L., Kwang, M.S., Min, K.S., Sun,
I.K., Insuk, S.S. & Seon, J.K. 2008. Thermoresponsive hydrogels based on poly(N-isopropylacrylamide)/chondroitin
sulfate. Sensors and Actuators B: Chemical 135: 336-341.
Yamin, B.M.,
Suwandi, S.A., Sivakumar,
K. & Shawkatly, O.B. 1996. A
triclinic form of dipyrrolidylthiuram
disulphide. Acta
Crystal 52: 1966-1968.
*Pengarang untuk surat-menyurat; email: azwanlazim@ukm.edu.my