Sains Malaysiana 46(10)(2017): 1923–1933
http://dx.doi.org/10.17576/jsm-2017-4610-31
The Influence of Geometrical Shapes of Stenosis on the Blood
Flow in Stenosed Artery
(Pengaruh Bentuk Geometri Stenosis ke atas Aliran Darah dalam Arteri Stenos)
SARFARAZ KAMANGAR1*, IRFAN ANJUM BADRUDDIN2, N. AMEER AHAMAD3, KALIMUTHU GOVINDARAJU4, N. NIK-GHAZALI1, N.J. SALMAN AHMED5,
A. BADARUDIN1 & T.M. YUNUS
KHAN6
1Department
of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Federal Territory,
Malaysia
2Department of Mechanical Engineering, College of Engineering, King Khalid
University, Abha - 61421, Kingdom of Saudi Arabia
3Mathematics Department, Faculty
of Science, University of Tabuk, Saudi Arabia
4Department of Mechanical and
Industrial Engineering, Mekelle University, Mekelle, Ethiopia
5Department
of Mechanical and Industrial Engineering, Sultan Qaboos University, 33, Alkhoud, Muscat, 123, Oman
6Department of Mechanical Engineering, CMR Technical Campus, Hyderabad,
India
Diserahkan: 9
Mac 2016/Diterima: 20 Mac 2017
ABSTRACT
The present work was
carried out to investigate the blood flow behavior and the severity of blockage
caused in the arterial passage due to the different geometries such as
elliptical, trapezium and triangular shapes of stenosis. The study was
conducted with respect to various sizes of stenosis in terms of 70%, 80% and
90% area blockage of the arterial blood flow. The study was carried out
numerically with the help of advance computational fluid dynamic software. It
was found that the shape of the stenosis plays an important role in overall
pressure drop across the blockage region of artery. The highest level of
pressure drop was observed for trapezoidal shape of stenosis followed by
elliptical and then by triangular shaped stenosis. The wall shear stress across
the stenosis is great for trapezoidal shape followed by triangular and
elliptical stenosis for same blockage area in the artery.
Keywords: CFD;
coronary artery; non-Newtonian flow; stenosis
ABSTRAK
Kajian ini dijalankan untuk mengkaji sifat aliran darah dan keterukan laluan arteri yang tersumbat disebabkan oleh geometri stenosis yang berbeza seperti elips, trapezium dan bentuk segi tiga. Kajian ini dijalankan dengan pelbagai saiz stenosis pada kadar saiz sumbatan laluan arteri 70%, 80% dan 90%. Kajian ini dijalankan dengan kaedah berangka menggunakan perisian dinamik bendalir. Hasil kajian mendapati bahawa bentuk stenosis memainkan peranan penting dalam penurunan tekanan keseluruhan pada kawasan arteri yang tersumbat. Tahap tertinggi kejatuhan tekanan diperhatikan berlaku pada stenosis yang berbentuk trapezoid diikuti oleh elips dan kemudian oleh stenosis berbentuk segi tiga. Tegasan ricih permukaan seluruh stenosis yang paling besar adalah untuk bentuk trapezoid, diikuti oleh stenosis segi tiga dan elips.
Kata kunci: Aliran bukan Newtonian; arteri koronari; stenosis; CFD
RUJUKAN
Banerjee,
R.K., Back, L.H., Back, M.R. & Cho, Y.I. 2003. Physiological flow analysis in significant human coronary artery stenoses. Biorheology 40(4): 451-476.
Berglund,
H., Luo, H., Nishioka, T., Fishbein,
M.C., Eigler, N.L., Tabak,
S.W. & Siegel, R.J. 1997. Highly
localized arterial remodeling in patients with coronary atherosclerosis. Circulation 96(5): 1470-1476.
Chaichana,
T., Sun, Z. & Jewkes, J. 2012. Computational fluid dynamics analysis of the effect of plaques in
the left coronary artery. Computational and Mathematical Methods in
Medicine 2012: Article ID. 504367.
Chaichana,
T., Sun, Z. & Jewkes, J. 2013. Haemodynamic analysis of the effect of different types of plaques in the left coronary
artery. Computerized Medical Imaging and Graphics 37(3): 197-206.
Chaichana,
T., Sun, Z. & Jewkes, J. 2014. Impact of plaques in the left coronary artery on wall shear stress
and pressure gradient in coronary side branches. Computer Methods in
Biomechanics and Biomedical Engineering 17(2): 108-118.
Dash,
R.K., Jayaraman, G. & Mehta, K.N. 1999. Flow
in a catheterized curved artery with stenosis. Journal of Biomechanics 32(1):
49-61.
Deshpande,
M.D., Giddens, D.P. & Mabon, R.F. 1976. Steady laminar flow through
modelled vascular stenoses. Journal of
Biomechanics 9(4): 165-174.
Fatemi, R.S. & Rittgers, S.E. 1994. Derivation of shear rates from near-wall LDA measurements
under steady and pulsatile flow conditions. Transactions-American Society of
Mechanical Engineers Journal of Biomechanical Engineering 116: 361-361.
Fry,
D.L. 1973. Responses of the arterial wall to certain physical
factors. In Ciba Foundation Symposium 12 - Atherogenesis:
Initiating Factors, edited by Porter, R. & Knight, J. John Chichester: Wiley & Sons, Ltd. doi:
10.1002/9780470719954. ch5.
Giddens,
D.P., Mabon, R.F. & Cassanova, R.A. 1976. Measurements of disordered flows distal to subtotal vascular stenoses in the thoracic aortas of dogs. Circulation
Research 39(1): 112-119.
Govindaraju, K., Badruddin, I.A., Viswanathan, G.N., Kamangar, S., Ahmed, N.S. & Al-Rashed,
A.A. 2016a. Influence of variable bifurcation angulation and outflow boundary
conditions in 3D finite element modelling of left coronary artery on coronary
diagnostic parameter. Current Science 111(2): 368-374.
Govindaraju, K.,
Viswanathan, G.N., Badruddin, I.A., Kamangar, S., Ahmed, N.J. & Al-Rashed,
A.A. 2016b. A parametric study of the effect of arterial wall curvature on non-invasive
assessment of stenosis severity: Computational fluid dynamics study. Current
Science 111(3): 483-491.
Govindaraju, K., Kamangar, S., Badruddin,
I.A., Viswanathan, G.N., Badarudin, A. & Ahmed,
N.S. 2014. Effect of porous media of the stenosed artery
wall to the coronary physiological diagnostic parameter: a computational fluid
dynamic analysis. Atherosclerosis 233(2): 630-635.
Ha,
H. & Lee, S.J. 2014. Effect of swirling inlet condition
on the flow field in a stenosed arterial vessel
model. Medical Engineering & Physics 36(1): 119-128.
Jozwik,
K. & Obidowski, D. 2010. Numerical simulations of the blood flow through vertebral arteries. Journal
of Biomechanics 43(2): 177-185.
Kamangar,
S., Badruddin, I.A., Badarudin,
A., Nik-Ghazali, N., Govindaraju,
K., Salman Ahmed, N.J. & Yunus Khan, T.M. 2017a. Influence of stenosis on hemodynamic parameters in the realistic left coronary
artery under hyperemic conditions. Computer Methods in Biomechanics and
Biomedical Engineering 20(4): 365-372.
Kamangar,
S., Badruddin, I.A., Govindaraju,
K., Nik-Ghazali, N., Badarudin,
A., Viswanathan, G.N., Ahmed, N.S. & Khan, T.Y. 2017b. Patient-specific 3D hemodynamics modelling of left coronary artery under
hyperemic conditions. Medical & Biological Engineering & Computing 111(2):
368-374.
Kamangar,
S., Kalimuthu, G., Anjum Badruddin, I., Badarudin, A.,
Salman Ahmed, N.J. & Khan, T.M. 2014. Numerical investigation of the effect of stenosis geometry on the
coronary diagnostic parameters. The Scientific World Journal 2014:
Article ID 354946.
Kagadis,
G.C., Skouras, E.D., Bourantas, G.C., Paraskeva, C.A., Katsanos, K., Karnabatidis, D. & Nikiforidis,
G.C. 2008. Computational representation and hemodynamic
characterization of in vivo acquired severe stenotic renal artery geometries
using turbulence modeling. Medical Engineering & Physics 30(5):
647-660.
Keshavarz-Motamed,
Z. & Kadem, L. 2011. 3D pulsatile flow in a curved tube with coexisting model of aortic
stenosis and coarctation of the aorta. Medical
Engineering & Physics 33(3): 315-324.
Khalifa,
A.M.A. & Giddens, D.P. 1978. Analysis of disorder in pulsatile flows with application to poststenotic blood velocity measurement in dogs. Journal
of Biomechanics 11(3): 129- 141.
Konala,
B.C., Das, A. & Banerjee, R.K. 2011. Influence of
arterial wall-stenosis compliance on the coronary diagnostic parameters. Journal
of Biomechanics 44(5): 842-847.
Lee,
T.S. 1994. Steady laminar fluid flow through variable constrictions in vascular
tube. Journal of Fluids Engineering 116(1): 66-71.
Liu,
B. 2007. The influences of stenosis on the
downstream flow pattern in curved arteries. Medical Engineering &
Physics 29(8): 868-876.
Lorenzini,
G. & Casalena, E. 2008. CFD analysis of pulsatile blood flow in an atherosclerotic human
artery with eccentric plaques. Journal of Biomechanics 41(9):
1862-1870.
Mallinger,
F. & Drikakis, D. 2002. Instability in three-dimensional, unsteady, stenotic flows. International
Journal of Heat and Fluid Flow 23(5): 657-663.
Misra,
J.C. & Shit, G.C. 2006. Blood flow through arteries in a
pathological state: A theoretical study. International Journal of
Engineering Science 44(10): 662-671.
Moser,
K.W., Kutter, E.C., Georgiadis,
J.G., Buckius, R.O., Morris, H.D. & Torczynski, J.R. 2000. Velocity measurements of flow through a step stenosis using
magnetic resonance imaging. Experiments in Fluids 29(5): 438-447.
O’Brien,
V. & Ehrlich, L.W. 1985. I. Simple pulsatile flow in an
artery with a constriction. Journal of Biomechanics 18(2): 117-127.
Paul,
M.C. & Larman, A. 2009. Investigation of spiral blood flow in a model of arterial stenosis. Medical Engineering & Physics 31(9): 1195-1203.
Peelukhana,
S.V., Back, L.H. & Banerjee, R.K. 2009. Influence of
coronary collateral flow on coronary diagnostic parameters: An in vitro study. Journal of Biomechanics 42(16): 2753- 2759.
Rajabi-Jaghargh,
E., Kolli, K.K., Back, L.H. & Banerjee, R.K.
2011. Effect of guidewire on contribution of loss due to momentum change and viscous
loss to the translesional pressure drop across coronary
artery stenosis: An analytical approach. Biomedical Engineering Online 10:
51.
Roy,
A.S., Back, L.H. & Banerjee, R.K. 2006. Guidewire flow
obstruction effect on pressure drop-flow relationship in moderate coronary
artery stenosis. Journal of Biomechanics 39(5): 853-864.
Ryou,
H.S., Kim, S., Kim, S.W. & Cho, S.W. 2012. Construction of healthy arteries
using computed tomography and virtual histology intravascular ultrasound. Journal
of Biomechanics 45(9): 1612-1618.
Shukla,
J.B., Parihar, R.S. & Rao, B.R.P. 1980. Effects of stenosis on non-Newtonian flow of the blood in an
artery. Bulletin of Mathematical Biology 42(3): 283-294.
Tang,
D., Yang, C., Kobayashi, S., Zheng, J. & Vito, R.P. 2003. Effect of stenosis asymmetry on blood flow and artery compression: A
three-dimensional fluid-structure interaction model. Annals of Biomedical
Engineering 31(10): 1182-1193.
Tobis, J., Azarbal, B. & Slavin,
L. 2007. Assessment of intermediate severity coronary lesions
in the catheterization laboratory. Journal of the American College of
Cardiology 49(8): 839-848.
Young,
D.F. 1968. Effect of a time-dependent stenosis on flow
through a tube. Journal of Manufacturing Science and Engineering 90(2):
248-254.
*Pengarang untuk surat-meyurat; email: sarfaraz.kamangar@gmail.com