Sains Malaysiana 46(10)(2017): 1979–1786
http://dx.doi.org/10.17576/jsm-2017-4610-37
Kesan Suhu Pensinteran terhadap Sifat Mekanik dan Mikrostruktur Alumina-Zirkonia yang Difabrikasi dengan Kaedah Pengacuan Suntikan Seramik
(Effect of Sintering Temperature on the Mechanical
Properties and Microstructure of Alumina-Zirconia Fabricated via Ceramic
Injection Moulding Method)
SARIZAL MD ANI, ANDANASTUTI MUCHTAR*, NORHAMIDI MUHAMAD
& JAHARAH A. GHANI
Jabatan Kejuruteraan Mekanik dan Bahan, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan: 7 Mei 2017/Diterima: 21 Julai 2017
ABSTRAK
Kesan suhu pensinteran terhadap sifat mekanik dan mikrostruktur bahan komposit alumina-zirkonia telah dikaji. Jasad hijau alumina-zirkonia difabrikasi dengan menggunakan kaedah pengacuan suntikan seramik menggunakan sistem bahan pengikat pelbagai komponen. Jasad perang yang terhasil selepas proses penyahikatan disinter pada suhu 1400, 1450, 1500, 1550, 1600 dan 1650°C selama 2 jam. Selanjutnya nilai ketumpatan, kekerasan dan keliatan patah bagi jasad tersinter diukur. Mikrostruktur jasad tersinter ditentukan dengan menggunakan mikroskop imbasan elektron (SEM). Kajian menunjukkan nilai ketumpatan, kekerasan dan keliatan patah bagi jasad tersinter meningkat sejajar dengan peningkatan suhu pensinteran. Hasil uji kaji juga mendapati pada suhu pensinteran 1650°C sifat mekanik bahan mencapai keadaan maksimum. Penumpatan jasad tersinter 98% menghampiri ketumpatan teori dengan nilai kekerasan 16.9 GPa dan keliatan patah mencecah 3.95 MPa.m1/2. Keputusan tersebut dapat dikaitkan dengan mikrostruktur bahan yang padat didorong oleh tumbesaran ira yang lengkap.
Kata kunci: Alumina-zirkonia; pengacuan suntikan seramik; suhu pensinteran
ABSTRACT
The effects of
sintering temperature on the mechanical properties and microstructure of
alumina-zirconia composite were investigated. Alumina-zirconia parts were
successfully fabricated via ceramic injection moulding method using a multi-component binder system. The debound parts were sintered at temperatures of 1400, 1450, 1500, 1550, 1600 and 1650°C for 2 h after debinding process.
Furthermore, the density, hardness and fracture toughness of the sintered parts
were measured. The microstructure of the sintered part was observed via
scanning electron microscope. The results showed that the density, hardness and
fracture toughness of the sintered parts increase with increasing sintering
temperature. The experimental results also indicate that the mechanical properties
of the materials achieve maximum conditions at a sintering temperature of 1650°C.
The densification of the sintered parts is close to 98.1% of the theoretical
density with a hardness of 16.9 GPa and a fracture toughness of 3.95 MPa.m1/2. The results can be
attributed to the microstructure of the dense material being driven by complete
grain growth.
Keywords:
Alumina-zirconia; ceramic injection moulding;
sintering temperature
RUJUKAN
Anstis,
G.R., Chantikul, P., Lawn, B.R. & Marshall, D.B.
1981. A critical evaluation of indentation techniques for measuring fracture
toughness: I, direct crack measurements. Journal of the American Ceramic
Society 64: 533-538.
Azhar,
A.Z.A., Mohamad, H., Ratnam, M.M.
& Ahmad, Z.A. 2010. The effect of MgO addition on microstructure, mechanical properties and wear performance of
zirconia-toughened alumina cutting inserts. Journal of Alloys and Compounds 497:
316-320.
Azhar,
A.Z.A., Ratnam, M.M. & Ahmad, Z.A. 2009. Effect of Al2O3/YSZ
microstructures on wear and mechanical properties of cutting inserts. Journal
of Alloys and Compounds 478: 608-614.
Callister,
W.D. & Rethwisch, D.G. 2013. Materials Science and Engineering. New Jersey: John
Wiley & Sons.
Chua,
M.I.H., Sulong, A.B., Abdullah, M.F. & Muhamad, N.
2013. Optimization of injection molding and solvent debinding parameters of stainless steel powder (SS316L) based feedstock for metal
injection molding. Sains Malaysiana42(12): 1743-1750.
Chuankrerkkul, N., Somton, K., Wonglom, T., Dateraksa, K. & Laoratanakul,
P. 2016. Physical and mechanical properties of zirconia toughened alumina (ZTA)
composites fabricated by powder injection moulding. Chiang
Mai Journal of Science 43: 375-380.
Cristofolini,
I., Rao, A., Menapace, C. & Molinari, A. 2010. Influence of sintering temperature on the shrinkage and geometrical
characteristics of steel parts produced by powder metallurgy. Journal of
Materials Processing Technology 210: 1716-1725.
Farhana Mohd Foudzi. 2011. Keupayaan pemprosesan yttria zirkonia terstabil bersaiz nano dengan bahan pengikat berasaskan stearin sawit dalam pengacuan suntikan serbuk mikro. Tesis Sarjana Sains, Jabatan Kejuruteraan Mekanik dan Bahan, Universiti Kebangsaan Malaysia (tidak diterbitkan).
Foudzi,
F.M., Muhamad, N., Sulong, A.B. & Zakaria, H. 2011. Flow behavior
characteristic for injection process using nano-yttria stabilized zirconia for micro metal injection molding (μMIM). Applied Mechanics and Materials 44-47: 480-484.
German,
R.M. & Bose, A. 1997. Injection Molding
for Metal and Ceramic. New Jersey: Metal Powder Industries
Federation.
German,
R.M. & Ferchalk, S.K. 2005. Metal and ceramic injection molding-technical status and future challenges. Proceeding of Advances in Powder Metallury & Particulate. hlm. 30-40.
Han,
J.S., Gal, C.W., Kim, J.H. & Park, S.J. 2016. Fabrication of high-aspect-ratio micro piezoelectric array by
powder injection molding. Ceramics International 42: 9475-9481.
Ipek,
M., Zeytin, S. & Bindal,
C. 2011. An evaluation of Al2O3- ZrO2 composites produced by coprecipitation method. Journal of Alloys and Compounds 509: 486-489.
Lo Casto, S., Lo Valvo, E., Lucchini, E., Maschio, S., Piacenta, M. & Ruisi, V.F. 1996. Machining
of steel with advanced ceramic tools. Key Engineering Materials 114:
105-114.
Loebbecke,
B., Knitter, R. & Haubelt, J. 2009. Rheological properties of alumina feedstocks for the low-pressure
injection moulding process. Journal of the
European Ceramic Society 29: 1595-1602.
Mahfuzah, Z.
& Muhammad, H.I. 2017. Rheological behavior of yttria stabilized zirconia (YSZ) feedstock for ceramic injection moulding (CIM) process. Materials Science Forum 882: 119-123.
Md Ani, S., Muchtar, A., Muhamad, N. & Ghani, J.A.
2014. Fabrication of zirconia-toughened alumina parts by powder injection molding
process: Optimized processing parameters. Ceramics International 40:
273-280.
Md Ani, S., Muchtar, A., Muhamad, N. & Ghani, J.A.
2013a. Pencirian keseragaman campuran dan sifat reologi serbuk alumina-zirkonia untuk pengacuan suntikan seramik. Sains Malaysiana42(9):
1311-1317.
Md Ani, S., Muchtar, A., Muhamad, N. & Ghani, J.A.
2013b. Effects of injection temperature and pressure on green part
density for ceramic injection molding. Advanced
Materials Research 622-623: 429-432.
Mohd Foudzi, F., Muhamad, N., Sulong,
A.B. & Zakaria, H. 2013. Yttria stabilized zirconia formed by micro ceramic injection molding: Rheological
properties and debinding effects on the sintered
part. Ceramics International 39: 2665-2674.
Mohd Hadzley Abu Bakar. 2004. Fabrikasi dan prestasi pemesinan sisipan perkakas alumina zirkonia. Tesis Sarjana Sains, Jabatan Kejuruteraan Mekanik dan Bahan, Universiti Kebangsaan Malaysia (tidak diterbitkan).
Naglieri,
V., Palmero, P., Montanaro,
L. & Chevalier, J. 2013. Elaboration of alumina-zirconia composites: Role of
the zirconia content on the microstructure and mechanical properties. Materials 6: 2090-2102.
Ning,
W.Y., Muhamad, N., Sulong, A.B., Fayyaz,
A. & Raza, M.R. 2015. Effect of vanadium carbide on sintered WC- 10%Co
produced by micro-powder injection molding. Sains Malaysiana44(8): 1175-1181.
Oungkulsolmongkol,
T., Salee-Art, P. & Buggakupta,
W. 2010. Hardness and fracture toughness of alumina-based particulate composites with
zirconia and strontia additives. Journal of
Metals, Materials and Minerals 20: 71-78.
Peng, H., Jiang, X.,
Li, J. & Bai, X. 2015. Advance in research of alumina ceramic injection
molding. Journal of Functional Materials 46: 21007-21011.
Rajabi,
J., Zakaria, H., Muhamad, N., Sulong,
A.B. & Fayyaz, A. 2015. Fabrication of
miniature parts using nano-sized powders and an
environmentally friendly binder through micro powder injection molding. Microsystem
Technologies 21: 1131-1136.
Sadangi,
R.K., Shukla, V. & Kear, B.H. 2005. Processing and
properties of ZrO2(3Y2O3)-Al2O3 nanocomposites. International Journal of Refractory Metals & Hard
Materials 23: 363-368.
Song,
X.X., Feng, Y.B. & Qiu, T. 2015. Preparation
of alumina ceramic by injection molding. Journal of Synthetic
Crystals 44: 3634-3638.
Standring, T., Blackburn, S.
& Wilson, P. 2016. Investigation into paraffin wax and ethylene vinyl
acetate blends for use as a carrier vehicle in ceramic injection molding. Polymer-
Plastics Technology and Engineering 55: 802-817.
Szutkowska, M. 2004. Fracture resistence behavior of alumina-zirconia composites. Journal
of Materials Processing Technology 153-154: 868-874.
Tuan,
W.H., Chen, R.Z., Wang, T.C., Cheng, C.H. & Kuo,
P.S. 2002. Mechanical properties of Al2O3/ZrO2 composites. Journal of the European Ceramic Society 22:
2827-2833.
Yu,
P.C., Li, Q.F., Fuh, J.Y.H., Li, T. & Lu, L.
2007. Two-stage sintering of nano-sized yttria stabilized zirconia process by powder injection moulding. Journal of Materials Processing Technology 192-193: 312-318.
Zakaria,
H., Muhamad, N., Sulong, A.B., Irwan Ibrahim, M.H. & Foudzi, F. 2014. Moldability characteristics of 3 mol% yttria stabilized zirconia feedstock for micro-powder injection molding process. Sains Malaysiana43(1):
129-136.
*Pengarang untuk surat-menyurat; email: muchtar@ukm.edu.my