Sains
Malaysiana 46(11)(2017): 2143-2148
http://dx.doi.org/10.17576/jsm-2017-4611-15
Influence of Air
Supply Velocity on Temperature Field in the Self Heating Process of Coal
(Pengaruh
Halaju Bekalan Udara pada Bidang Suhu dalam Proses Pemanasan Sendiri Arang
Batu)
SHUANGLIN SONG1,2,
SHUGANG WANG1*, YUNTAO LIANG2, XIAOCHEN LI1 & QI LIN1
1Faculty of Infrastructure
Engineering, Dalian University of Technology, Dalian 116024, China
2State Key Laboratory of Coal Mine
Safety Technology, CCTEG Shenyang Research Institute
Shenyang,
110016, China
Diserahkan:
15 Januari 2017/Diterima: 21 Mei 2017
ABSTRACT
The air supply velocity is an important factor affecting the
spontaneous combustion of coal. The appropriate air velocity can not only
provide the oxygen required for the oxidation reaction, but maintains the good
heat storage environment. Therefore, it is necessary to study the influence of
the actual air velocity in the pore space on the self-heating process of coal
particles. This paper focuses on studying the real space piled up by spherical
particles. CFD simulation software is used to
establish the numerical model from pore scale. Good fitness of the simulation
results with the existing results verifies the feasibility of the calculation
method. Later, the calculation conditions are changed to calculate and analyze
the velocity field and the temperature field for self-heating of some particles
(the surface of the particles is at a certain temperature) and expound the
effect of different air supply velocities on gathering and dissipating the
heat.
Keywords: Coal self-heating; flow field; pore scale;
self-heating point; temperature field
ABSTRAK
Halaju bekalan udara adalah faktor penting yang mempengaruhi pembakaran
spontan arang batu. Halaju udara yang sesuai bukan sahaja dapat memberikan
oksigen yang diperlukan untuk reaksi pengoksidaan, tetapi mengekalkan
persekitaran penyimpanan haba yang baik. Oleh itu, adalah perlu untuk mengkaji
pengaruh halaju udara sebenar di ruang liang pada proses pemanasan sendiri
zarah arang batu. Makalah ini memberi tumpuan kepada mengkaji ruang sebenar
yang ditimbun oleh zarah sfera. Perisian simulasi CFD digunakan untuk menubuhkan model berangka daripada
skala liang. Kesesuaian yang baik daripada keputusan simulasi dengan keputusan
sedia ada mengesahkan kelayakan kaedah pengiraan yang digunakan. Kemudian,
keadaan pengiraan diubah untuk mengira dan menganalisis medan halaju dan medan
suhu untuk pemanasan sendiri beberapa zarah (contohnya permukaan zarah berada
pada suhu tertentu) dan menjelaskan kesan halangan bekalan udara yang berlainan
pada pengumpulan dan menghilangkan haba.
Kata
kunci: Bidang aliran; medan suhu; pemanasan sendiri arang batu; skala lubang;
titik pemanasan sendiri
RUJUKAN
Achenbach, E. 1995.
Heat and flow characteristics of packed beds. Experimental Thermal and Fluid
Science 10: 17-27.
Ahamed, A.J. & Loganathan, K., 2017. Water quality concern in
the Amaravathi River Basin of Karur district: A view at heavy metal
concentration and their interrelationships using geostatistical and
multivariate analysis. Geology, Ecology, and Landscapes 1(1): 19-36.
Deng, J., Xu, J-C, & Wang,
H-Q. 2002. Numerical simulation study on the spontaneous combustion process of
the column coal sample. Journal of Liaoning Technical University (Natural
Science Edition) 21: 129-132.
Dixon, A.G., Taskin, M.E.,
Nijemeisland, M. & Stitt, E.H. 2011. Systematic mesh development for 3D CFD
simulation of fixed beds: Single sphere study. Computers and Chemical
Engineering 35(7): 1171-1185.
Guardo, A., Coussirat, M.,
Larrayoz, M.A., Recasens, F. & Egusquiva, E. 2004. CFD flow and heat
transfer in nonregular packings for fixed bed equipment design. Industrial
& Engineering Chemistry Research 43(22): 7049-7056.
Jiang, P.X. & Lu, X.C. 2006.
Numerical simulation of fluid flow and convection heat transfer in sintered
porous plate channels. International Journal of Heat and Mass Transfer 49(9-10):
1685-1695.
Jolls, K.R. & Hanratty, T.J.
1966. Transition to turbulence for flow through a dumped bed of spheres. Chemical
Engineering Science 21: 1185-90.
Krishnaswamy, S., Bhat, S. &
Gunn, R.D. 1996. Low-temperature oxidation of coal. Fuel 75: 333-362.
Noraini, T., Ruzi, A.R., Ismail,
B.S., Ummu Hani, B., Sahimi, S. & Azeyanty, J.A. 2016. Petiole vascular
bundles and its taxonomic value in the tribe Dipterocarpeae (Dipterocarpaceae) Sains
Malaysiana 45(2): 247-253.
Patankar, S.V. 1988. Numerical Heat Transfer and Fluid Flow.
New York: Taylor & Francis. pp. 13-16.
Sardar, M.S., Zafar, S. &
Farahani, M.R. 2017. Computing sanskruti index of the polycyclic aromatic
hydrocarbons. Geology, Ecology, and Landscapes 1(1): 37-40.
Tobiś, J. &
Ziółkowski, D. 1988. Modelling of heat transfer at the wall of a
packed-bed apparatus. Chemical Engineering Science 43: 3031-3036.
Wakao, N. & Funazkri, T.
1978. Effect of fluid dispersion coefficients on particle-to-fluid mass
transfer coefficients in packed beds: Correlation of Sherwood numbers.
Chemical Engineering Science 33: 1375-1384.
Wu, C.Y., Ferng, Y.M., Chieng,
C.C. & Liu, C.C. 2010. Investigating the advantages and disadvantages of
realistic approach and porous approach for closely packed pebbles in CFD
simulation. Nuclear Engineering and Design 240: 1151-1159.
Xu, J. & Wang, H. 2002. The
neural network prediction method for the limit parameters of coal
self-ignition. Journal of China Coal Society 27: 366-370.
Yuan, L. & Smith, A.C. 2009.
CFD modeling of spontaneous heating in a large-scale coal chamber. Journal
of Loss Prevention in the Process Industries 22: 426-433.
*Pengarang untuk
surat-menyurat; email: sgwang@dlut.edu.cn
|