Sains
Malaysiana 46(11)(2017): 2187-2193
http://dx.doi.org/10.17576/jsm-2017-4611-20
Laboratory Study of
Acoustic Velocity in Different Types of Rocks at Seismic Frequency Band
(Kajian Makmal Halaju Akustik dalam
Pelbagai Jenis Batuan pada Jalur Frekuensi Seismos)
YUNLAN HE1,2*,SUPING
PENG2,
WENFENG DU2,
XIAOMING TANG2
& ZENG HU2
1State
Key Laboratory of Water Resource Protection and Utilization in
Coal Mining, Beijing 100011, China
2State
Key Laboratory of Coal Resources and Safety Mining, China University
of Mining & Technology (Beijing), Beijing
100083, China
Diserahkan:
22 Januari 2017/Diterima: 30 Mei 2017
ABSTRACT
In order to understand the characteristics of acoustic wave propagation
in rocks within seismic frequency band (<100 Hz), the velocities of
longitudinal and transverse waves of four different types of rocks were tested
using low-frequency stress-strain method by means of the physical testing
system of rock at low frequency and the experimental data of acoustic
velocities of four different types of rocks at this frequency band were
obtained. The experimental results showed that the acoustic velocities of four
different types of rocks increased with the increase of temperature and
pressure within the temperature and pressure ranges set by the experiment. The
acoustic velocity of fine sandstone at 50% water saturation was smaller than
that of dry sample. The acoustic velocities of four different types of rocks
were different and the velocities of longitudinal waves of gritstone, fine
sandstone, argillaceous siltstone and mudstone increased in turn under similar
conditions and were smaller than those at ultrasonic frequency. Few of existing
studies focus on the acoustic velocity at seismic frequency band, thus, further
understanding of the acoustic characteristics at this seismic frequency band
still requires more experimental data.
Keywords: Acoustic velocity; pressure; seismic frequency band;
temperature
ABSTRAK
Untuk memahami ciri penyebaran gelombang akustik dalam jalur frekuensi
seismos (< 100 Hz) batuan, halaju gelombang membujur dan melintang empat
jenis batuan berbeza telah diuji menggunakan kaedah frekuensi rendah
strain-tegasan melalui sistem ujian fizikal batuan pada frekuensi rendah dan
data uji kaji halaju akustik daripada empat jenis batuan pada jalur frekuensi
ini diperoleh. Keputusan uji kaji menunjukkan bahawa halaju akustik daripada empat
jenis batuan meningkat dengan peningkatan suhu dan tekanan dalam julat suhu dan
tekanan yang ditetapkan oleh uji kaji ini. Halaju akustik batu pasir halus pada
50% air tepu adalah lebih kecil berbanding dengan sampel kering. Halaju akustik
daripada empat jenis batuan berbeza dan halaju daripada gelombang membujur batu
grit, batu pasir halus, batu lodak argil dan batu lumpur meningkat pada keadaan
yang serupa tetapi lebih kecil berbanding dengan kekerapan ultrasonik. Beberapa
kajian sedia ada memberi tumpuan kepada kelajuan akustik pada jalur frekuensi
seismos, oleh itu, pemahaman lanjut terhadap ciri akustik pada jalur frekuensi
seismos ini masih memerlukan lebih data uji kaji.
Kata kunci: Halaju akustik; jalur
frekuensi seismos; suhu; tekanan
RUJUKAN
Ba, J. 2010. Wave propagation
theory in double-porosity medium and experimental analysis on seismic
responses. Scientia Sinica (Physica, Mechanica & Astronomica) 40(11):
1398-1409.
Batzle, M.L., Han, D.H. &
Hofmann, R. 2006. Fluid mobility and frequency-dependent seismic
velocity-direct measurements. Geophysics 71(1): N1-N9.
Biot, M.A. 1956. Theory of
propagation of elastic waves in a fluid-saturated porous solid. I.
Low-frequency range. The Journal of the Acoustical Society of America 28(2):
168-178.
Jiang, L., Yue, K., Yang, Y.
& Wu, Q. 2016. Leaching and freeze-thaw events contribute to litter
decomposition - A review. Sains Malaysiana 45(7): 1041-1047.
Mavko, G., Mukerji, T. &
Dvorkin, J. 2012. The Rock Physics Handbook, 2nd ed. Cambridge:
Cambridge University Press. pp. 310-311.
Mavko, G., Mukerji, T. &
Dvorkin, J. 1998. The Rock Physics Handbook: Tools for Seismic Analysis in
Porous Media. Cambridge: Cambridge University Press. pp. 102-112.
Müller, M.T., Gurevich, B. &
Lebedev, M. 2010. Seismic wave attenuation and dispersion resulting from
wave-induced flow in porous rocks - A review. Geophysics 75(5):
A147-A164.
Murphy III, W.F. 1984. Acoustic
measures of partical gas saturation in tight sandstones. Journal of
Geophysical Research 89(B13): 11549-11559
Sultana, M.N., Akib, S. &
Ashraf, M.A. 2017. Thermal comfort and runoff water quality performance on
green roofs in tropical conditions. Geology, Ecology, and Landscapes 1(1):
47-55.
Tutuncu, A.N., Gregory, A.R.,
Sharma, M.M. & Podio, A.L. 1998. Nonlinear viscoelastic behavior of
sedimentary rocks, Part 1: Effect of frequency and strain amplitude. Geophysics 63(1): 184-194.
Wang, S.X., Zhao, J.G., Harris,
J.M. & Quan, Y. 2012. Differential acoustic resonance spectroscopy for the
acoustic measurement of small and irregular samples in the low frequency range. Journal of Geophysical Research Atmospheres 117(B6):
doi.10.1029/2011JB00880.
Wei, X., Wang, S.X., Zhao, J.G.
& Deng, J.X. 2015a. Laboratory investigation of influence factors on Vp and
Vs in tigth sandstone. Geophysical Prospecting for Petroleum 54(1):
9-16.
Wei, X., Wang, S.X., Zhao, J.G.,
Tang, G.Y. & Deng, J.X. 2015b. Laboratory study of velocity of the seismic
wave in fluid-saturated sandstones. Chinese J. Geophys. 58(9): 330-338.
White, J.E. 1975. Computed
seismic speeds and attenuation in rocks with partial gas saturation. Geophysics 40(2): 224-232.
Wu, H., Zhao, B. & Gao, W.
2017. Analysis of gradient descent ontology iterative algorithm for geological
setting. Geology, Ecology, and Landscapes 1(1): 41-46.
*Pengarang untuk
surat-menyurat; email: 151023631@qq.com