Sains Malaysiana 46(11)(2017): 2205-2213
http://dx.doi.org/10.17576/jsm-2017-4611-22
On-line
Detection Method for Outliers of Dynamic Instability Measurement Data in
Geological Exploration Control Process
(Kaedah
Pengesanan atas Talian untuk Persilan Luar Pengukuran Data Ketidakstabilan
Dinamik
dalam Proses Penerokaan Kawalan Geologi)
FANG LIU1, WEIXING SU1*,
JIANJUN ZHAO2 & XIAODAN LIANG1
1School of Computer Science &
Software Engineering, Tianjin Polytechnic University, Tianjin 300387, China
2Bei Jing General Research
Institute of Mining & Metallurgy, Beijing 100160, China
Received:
3 January 2017/Accepted: 14 May 2017
ABSTRACT
Considering the
characteristics of the vibration data detected by the unstable regulation
process in the grinding and grading control system and the shortcomings of the
traditional wavelet anomaly detection method, an online anomaly detection
method combining autoregressive and wavelet analysis is proposed. By
introducing the improved robust AR model, this method can
overcome the problem that the time and frequency of traditional anomaly
detection using wavelet analysis method cannot be well balanced and ensure the
rationality of normal detection of process data. Considering the
characteristics of parameter change and dynamic characteristics in the process
of grinding and grading, the proposed method has the ability of on-line
detection and parameter updating in real time, which ensures the control
parameters of time-varying process control system. In order to avoid the
problem that the traditional anomaly detection method needs to set the
detection threshold, introduce the HMM to analyse the wavelet
coefficients and update the HMM parameters online, which
can ensure that the HMM can well reflect the distribution
of the abnormal value of the process data. Through the experiment and
application, it is proven that the anomaly data detection method proposed in this
paper is more suitable for the detection data in the process of unstable
regulation.
Keywords: Auto-regression;
HMM; outlier detection; time series; wavelet
ABSTRAK
Dengan mengambil kira ciri
data getaran yang dikesan melalui proses pengaturan yang tidak stabil dalam
sistem kawalan pengisaran dan penggredan serta kelemahan kaedah pengesanan
anomali tradisi gelombang kecil, kaedah pengesanan anomali atas talian yang
menggabungkan autoregresi dan analisis gelombang kecil adalah dicadangkan.
Dengan memperkenalkan model AR mantap diperbaik, kaedah ini
boleh mengatasi masalah tidak boleh seimbangkan masa dan kekerapan anomali
tradisi menggunakan kaedah analisis gelombang kecil dan memastikan rasionaliti
pengesanan biasa dalam pemprosesan data. Dengan mengambil kira ciri perubahan
parameter dan ciri dinamik dalam proses mengisar dan penggredan, kaedah yang
dicadangkan mempunyai keupayaan pengesanan atas talian dan pengemaskinian
parameter masa nyata dan memastikan parameter kawalan untuk sistem kawalan proses
perubahan masa. Bagi mengelakkan masalah yang dihadapi oleh kaedah pengesanan
anomali tradisi adalah perlu menetapkan tahap pengesanan dengan memperkenalkan HMM untuk
menganalisis pekali gelombang kecil dan mengemaskini parameter HMM secara
atas talian yang boleh memastikan bahawa HMM dapat menunjukkan
pengagihan nilai data proses yang tidak normal dalam pemprosesan data. Melalui
uji kaji dan aplikasinya, dibuktikan bahawa kaedah pengesanan anomali data yang
dicadangkan dalam kertas ini adalah lebih sesuai untuk pengesanan data dalam
proses peraturan yang tidak stabil.
Kata kunci:
Auto-regresi; gelombang kecil; HMM; pengesanan pensilan luar; siri masa
RUJUKAN
Alex, A., Haralambos, S. &
George, B. 2003. Anew algorithm for online structure and parameter adaptation
of RBF networks. Neural Networks 16: 1003-1017.
Bharti, S. & Pattanaik, K.K.
2016. Gravitational outlier detection for wireless sensor networks. International
Journal of Communication 29(13): 2015-2027.
Barnet, V. & Lewis, T. 1994. Outlier
in Statistical Data. Chichester: John Wiley & Sons.
Dai, W., Chai, T.Y. & Yang,
S.X. 2015. Data-driven optimization control for safety operation of hematite
grinding process. IEEE Transactions on Industrial Electronics 62(5):
2930-2941.
Durocher, M., Lee, T.S., Ouarda,
T.B.M.J. & Chebana, F. 2016. Hybrid signal detection approach for
hydro-meteorological variables combining EMD and cross-wavelet analysis. International
Journal of Climatology 36(4): 1600-1613.
Griffiths, K.R., Hicks, B.J.
& Keogh, P.S. 2016. Wavelet analysis to decompose a vibration simulation
signal to improve pre-distribution testing of packaging. Mechanical Systems
and Signal Processing 76-77: 780-795.
Grubbs, F.E. 1969. Procedures for
detecting outlying observations in samples. Technometrics 11(1): 1-21.
Han, J.W. & Micheline, K.
2001. 2nd ed. Data Mining Concepts and Techniques. Massachusetts: Morgan
Kaufmann Publishers. pp. 254-257.
Jeff, A.B. 2006. What HMMs Can
Do? IEICE-- Transactions on Information and Systems E89-D(3): 869-891.
Knorr, E.M. & Ng, R.T. 1999.
Finding intensional knowledge of distance-based outliers. Proceedings of the
Twenty-Fifth International Conference on Very Large Data Bases. pp.
211-222.
Knorr, E.M. & Ng, R.T. 1998.
Algorithms for mining distance-based outliers. Proceedings of the Twenty-
Fourth International Conference on Very Large Data Bases. pp. 392-403.
le Roux, J.D. & Craig, I.K.
2013. Reducing the number of size classes in a cumulative rates model used for
process control of a grinding mill circuit. Powder Technology 246:
169-181.
le Roux, J.D., Craig, I.K. &
Hulbert, D.G. 2013. Analysis and validation of a run-of-mine ore grinding mill
circuit model for process control. Minerals Engineering 43- 44: 121-134.
Lindang, H.U., Tarmudi, Z.H.
& Jawan, A. 2017. Assessing water quality index in river basin: Fuzzy
inference system approach. Malaysian Journal of Geoscience 1(1): 27-31.
Lou, H.L. 1995. Implementing the
viterbi algorithm-fundamentals and real-rime issues for processor designers. IEEE
Signal processing Magazing. pp. 42- 52.
Lu,
S. W. 2016. Acceleration of kinetic Monte Carlo simulation of particle breakage
process during grinding with controlled accuracy. Powder Technology 301:
186-196.
Mallat, S. & Hwang, W.L.
1992. Singularity detection and processing with wavelets. IEEE Transactions
on Information Theory 38(2): 617-642.
Othman, R., Isa, N. & Othman,
A. 2015. Precipitated calcium carbonate from industrial waste for paper making.
Sains Malaysiana 44(11): 1561-1565.
Pittner, S. & Kamarthi, S.V.
1999. Feature extraction from wavelet coefficients for pattern recognition
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(1):
83-88.
Rabiner, L.R. 1989. A tutorial on
hidden Markov models and selected applications in speech recognition. Proceedings
of the IEEE 77(2): 257-286.
Rahman, Z.U., Khan, Z.M.,
Khattak, Z., Abbas, M.A. & Ishfaque, M. 2017. Microfacies analysis and
reservoir potential of Sakesar Limestone, Nammal Gorge (Western Salt Range),
Upper Indus Basin, Pakistan. Pakistan Journal of Geology 1(1): 12-17.
Ramaswamy, S., Rastogi, R. &
Sim, K.S. 2000. Efficient algorithms for mining outliers from large data sets. Proceeding
of the ACM SIGMOD International Conference on Management of Data Dallas,
Teas: ACM Press. pp. 427-438.
Seo, H.S. 2016. A sequential
outlier detecting method using a clustering algorithm. The Korean Journal of
Applied Statistics 29(4): 699-706.
Su, W.X., Zhu, Y.L. & Liu, F.
2013. An online outlier detection method based on wavelet technique and robust
RBF network. Transactions of the Institute of Measurement and Control 35(8):
1046-1057.
Takeuchi, J.I. & Yamanishi,
K. 2006. A unifying framework for detecting out19liers and change points from
time series. IEEE Transactions on Knowledge and Data Engineering 18(4).
Xu, C.Y. & Shin, Y.C. 2007.
Control of cutting force for creep-feed grinding processes using a multi-level
fuzzy controller. Journal of Dynamic Systems Measurement and
Control-Transactions of the ASME 129(4): 480-492.
Zhang, C.L., Huang, Y.Z., Ma,
X.X., Lu, W.Z. & Wang, G.X. 1998. A new approach to detect transformer
inrush current by applying wavelet transform. In Proc. Powercon ’98 2:
1040-1044.
Zhang, Q., Wang, C.X. & Zhao,
J. 2012. Outlier detecting algorithm based on clustering and local information. Journal of Jilin University (Science Edition) 50(6): 1214-1217.
Zhou, P., Chai, T.Y. & Wang,
H. 2009. Intelligent optimal-setting control for grinding circuits of mineral
processing process. IEEE Transactions on Automation Science and Engineering 6(4):
730-743.
*Pengarang untuk
surat-menyurat; email: 15900201597@126.com
|