Sains Malaysiana 46(12)(2017): 2461–2467
http://dx.doi.org/10.17576/jsm-2017-4612-23
Sintesis, Pencirian
Spektroskopi dan
Sifat Fotomangkin Rutenium(II)
Bis(bipiridil)-2-(1H-pirazol-3-il)piridil
(Synthesis, Spectroscopy and Photocatalytic
Property of Ruthenium(II) Bis(bipyridyl)-2-(1H-pyrazol-3-yl)pyridyl)
WUN FUI
MARK-LEE1,
KIM
HANG
NG2,
LORNA
JEFFERY
MINGGU2,
KHUZAIMAH
ARIFIN2
& MOHAMMAD BIN KASSIM1,2*
1Pusat Pengajian
Sains Kimia dan
Teknologi Makanan, Fakulti Sains dan
Teknologi, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan,
Malaysia
2Institut Sel
Fuel, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 30 Jun 2016/Diterima:
2 Ogos 2017
ABSTRAK
Kompleks Ru(II),
[Ru(bpy)2(pypzH)](PF6)2 dengan bpy = 2,2’-bipiridil dan pypzH= 2-(1H-pirazol-3-il)piridin, telah berjaya disintesis dan dicirikan dengan
teknik spektroskopi
transformasi Fourier inframerah
(FTIR),
ultralembayung dan
cahaya nampak (UV-Vis),
resonans magnet nukleus
(RMN),
serta spektrometer
jisim. Pengiraan dengan kaedah teori
fungsi ketumpatan
(DFT)
dan DFT bersandar
masa (TD) telah dijalankan
untuk membangunkan
struktur optimum dan elektronik kompleks Ru(II). Data yang diperoleh menunjukkan orbital molekul terisi dengan tenaga
tertinggi (HOMO) disetempatkan
pada logam
Ru(II) dan ligan pypzH,
manakala orbital molekul
tidak terisi dengan
tenaga terendah
(LUMO)
didapati tersebar
secara menyeluruh pada kedua-dua struktur ligan bpy. Aktiviti fotomangkin
kompleks telah
diuji terhadap penguruaian pewarna tekstil bromotimol biru (BTB) disebabkan
aktiviti foto
[Ru(bpy)2(pypzH)](PF6)2 di
bawah sinaran lampu
xenon 450W (AM 1.5, penapis inframerah). Kadar dan
tertib tindak
balas foto-uraian BTB dikenal pasti dan
dibincangkan bersama
dengan mekanisma foto-uraian BTB.
Kata kunci:
Bromotimol biru;
DFT;
fotomangkin; piridin-pirazol;
rutenium bis-bipiridil
ABSTRACT
Complexes [Ru(bpy)2(pypzH)](PF6)2 where
bpy = 2,2’-bipyridyl and pypzH=
2-(1H-pyrazol-3-yl)piridine was synthesised
and characterised with spectroscopic
techniques including Fourier transform infrared (FTIR), UV-visible
(UV-Vis)
and nuclear magnetic resonance (NMR) and mass spectrometry. Density
functional theory (DFT) and time-dependent (TD)
DFT
calculations were carried out to study the structural
and electronic features of the Ru(II)
complex. The calculations showed the highest-occupied molecular
orbital (HOMO)
is mainly localised at the Ru(II)
centre and pypzH
ligand, while the lowest-unoccupied molecular orbital (LUMO)
is dominantly spread across both bpy
ligands. The photocatalytic activity was tested with a textile
dye derivative, bromothymol blue (BTB) that showed the degradation of the dye by the photocatalytic
action of [Ru(bpy)2(pypzH)](PF6)2 under
light irradiation with a xenon lamp (AM 1.5, infrared filter). The
rate and order of BTB photodegradation
reaction were established and the mechanism of the photodegradation
of BTB was discussed.
Keywords: Bromothymol blue; DFT; photocatalyst; piridine-pyrazole;
ruthenium bis-bipyridyl
RUJUKAN
Agarwal, S., Sadegh, H., Monajjemi, M., Hamdy, A.S., Ali,
G.A.M., Memar, A.O.H., Shahryari-Ghoshekandi,
R. Tyagi, I. & Gupta, V.K. 2016. Efficient removal of toxic bromothymol blue and methylene blue from
wastewater by polyvinyl alcohol. Journal of Molecular
Liquids 218: 191-197.
Amoroso, A.J., Thomson, A.M.C., Jeffery,
J.C., Jones, P.L., McCleverty, J.A.
& Ward, M.D. 1994. Synthesis of the new tripodal ligand Tris-[3-(2’-pyridyl)pyrazol-l-yl]hydroborate, and the crystal
structure of its europium(III) complex. European Journal
of Neuroscience (24): 2751-2752.
Ayob, M.T.M., Mohd, H.M.K., Rahman, I.A., Mohamed, F., Hidzir, N.M. & Radiman, S. 2016.
Pertumbuhan dan penambahbaikan
nanokomposit Ag-ZnO
untuk aktiviti fotomangkin. Sains
Malaysiana 45(8): 1265-1273.
Becke, A.D. 1993. Density functional thermochemistry III the role of exact exchange.
Journal of Chemical Physics 98: 5648-5652.
Becke, A.D. 1988. Density-functional exchange-energy approximation with correct asymptotic
behavior. Physical Review A
38(6): 3098-3100.
Bessegato, G.G., Cardoso, J.C.,
da Silva, B.F. & Zanoni, M.V.B.
2016. Combination of photoelectrocatalysis and ozonation:
A novel and powerful approach applied in acid yellow 1 mineralization.
Applied Catalysis B: Environmental 180: 161-168.
Bock,
C.R., Connor, J.A., Gutierrez, A.R., Meyer, T.J., Whitten, D.G.,
Sullivan, B.P. & Nagle, J.K. 1979. Estimation of excited-state redox potentials by
electron-transfer quenching. Application of electron-transfer
theory to excited-state redox processes. Journal of the American
Chemical Society 101: 4815-4824.
Boyer,
S.M., Liu, J., Zhang, S., Ehrlich, M.I., McCarthy, D.L., Tong,
L., DeCoste, J.B. Bernier, W.E. & Jones, W.E. 2016. The
role of ruthenium photosensitizers in the degradation of phenazopyridine
with TiO2 electrospun fibers.
Journal of Photochemistry and Photobiology A: Chemistry 329:
46-53.
Cheung,
S.T.C., Fung, A.K.M. & Lam, M.H.W. 1998. Visible
photosensitization of TiO2-photodegradation of CCl4
in aqueous medium. Chemosphere 36(11): 2461-2473.
Cossi, M., Rega, N., Scalmani, G. & Barone,
V. 2003. Molecules in solution with the C-PCM solvation
model. Journal of Computational Chemistry 24(6):
669-681.
Davidson,
E.R. & Feller, D. 1986. Basis set selection for molecular calculations. Chemical Reviews
86(4): 681-696.
Eskelinen, E., Luukkanen, S., Haukka, M., Ahlgrén, M. & Pakkanen, T.A. 2000. Redox and photochemical behaviour of ruthenium(II) complexes with H2dcbpy ligand (H2dcbpy
= 2,2-bipyridine-4,4-dicarboxylic acid). Journal of the Chemical
Society, Dalton Transactions 16: 2745-2752.
Fui, M.L.W., Hang, N.K., Arifin, K., Minggu, L.J. & Kassim, M.B. 2016. Photocatalytic
degradation of bromothymol blue with ruthenium(II)
bipyridyl complex in aqueous basic solution. AIP Conference
Proceedings 1784(II): 1-6.
Fung, A.K.M., Chiu, B.K.W. & Lam, M.H.W. 2003. Surface modification of TiO2 by a ruthenium(II)
polypyridyl complex via silyl-linkage
for the sensitized photocatalytic degradation of carbon tetrachloride
by visible irradiation. Water Research 37(8): 1939-1947.
Gumus, D. & Akbal, F. 2011. Photocatalytic degradation of textile dye and
wastewater. Water Air and Soil Pollution 216:
117-124.
Hachem, C., Bocquillon, F., Zahraa, O. & Bouchy, M. 2001. Decolourization of textile industry wastewater by the photocatalytic degradation
process. Dyes and Pigments 49(2): 117-125.
Han, Z., Liao, L., Wu, Y., Pan, H., Shen, S. & Chen, J.
2012. Synthesis and photocatalytic
application of oriented hierarchical ZnO
flower-rod architectures. Journal of Hazardous Materials
217-218: 100-106.
Hang, N.K., Minggu, L.J., Hj. Jumali, M.H. & Kassim, M.B. 2012. Nickel-doped tungsten
trioxide photoelectrodes for photoelectrochemical water splitting reaction. Sains Malaysiana 41(7):
893-899.
He, W.L., Chen, J.L., Chen, M. & Qian, D.J. 2016. Interfacial self-assembly, characterization, electrochemical,
and photo-catalytic properties of porphyrin-ruthenium complex/
polyoxomelate triad hybrid multilayers.
Colloids and Surfaces A: Physicochemical and Engineering
Aspects 509: 1-10.
Hehre, W.J., Radom, L., Schleyer, P.V.R.
& Pople, J.A. 1986. Ab initio molecular orbital theory.
Accounts of Chemical Research 9: 399-406.
Hu, F., Fang, C., Wang, Z., Liu, C., Zhu, B. & Zhu, L.
2017. Poly (N-vinyl imidazole)
gel composite porous membranes for rapid separation of dyes
through permeating adsorption. Separation and Purification
Technology 188: 1-10.
Jin, W., Wang, L. & Yu, Z. 2012. Supporting information for: A highly actve
ruthenium(II) pyrazolyl-pyridyl-pyrazole
complex catalyst for transfer hydrogenation of ketones. Organometallics
31(II): 5664-5667.
Khalik, W.F., Ho, L.N., Ong, S.A., Wong, Y.S., Yusoff, N.A. &
Ridwan, F. 2015. Decolorization
and mineralization of batik wastewater through solar photocatalytic
process. Sains Malaysiana
44(4): 607-612.
Lee, C., Yang, W. & Parr, R. 1988. Development of the Colle- Salvetti
correlation energy formula into a functional of the electron
density. Physical Review B 37(2): 785-789.
Li, J., Zhao, Z., Li, D., Tang, X., Feng, H., Qi, W. & Wang,
Q. 2017. Multifunctional walnut shell layer
used for oil/water mixtures separation and dyes adsorption.
Applied Surface Science 419: 869-874.
Mahon, M.J., Pillai, S.C., Kelly, J.M. & Gill, L.W. 2017. Solar photocatalytic disinfection
of E. coli and bacteriophages MS2, ΦX174
and PR772 using TiO2, ZnO
and ruthenium based complexes in a continuous flow system. Journal
of Photochemistry and Photobiology B: Biology 170: 79-90.
Miertuš, S., Scrocco, E. & Tomasi, J. 1981. Electrostatic interaction of a solute with a continuum. A direct utilizaion of Ab initio molecular
potentials for the prevision of solvent effects. Chemical
Physics 55(1): 117-129.
Mun, L.K., Abdullah, A.H., Hussein, M.Z. & Zainal, Z. 2014. Synthesis and photocatalysis
of ZnO/γ-Fe2O3
nanocomposite in degrading herbicide 2,4-dichlorophenoxyacetic
acid. Sains Malaysiana
43(3): 437-441.
Ng, K.H., Minggu, L.J., Mark-Lee,
W.F., Arifin, K., Jumali,
M.H.H. & Kassim, M.B. 2017. A new method for the fabrication of a bilayer
WO3/Fe2O3 photoelectrode
for enhanced photoelectrochemical
performance. Materials Research Bulletin 98: 47-52.
Paz, A., Carballo, J., Pérez, M.J. & Domínguez, J.M. 2017. Biological treatment of model dyes and textile wastewaters.
Chemosphere 181: 168-177.
Prier, C.K., Rankic, D.A. &
MacMillan, D.W.C. 2013. Visible light photoredox
catalysis with transition metal complexes: Applications in organic
synthesis. Chemical Reviews 113(7): 5322-5363.
Rozenel, S.S., Azpilcueta,
C.R., Flores-Leonar, M.M., Rebolledo-
Chávez, J.P.F., Ortiz-Frade, L., Amador-Bedolla, C. & Martin, E. 2017. Ruthenium
tris bipyridine
derivatives and their photocatalytic activity in [4+2] cycloadditions.
An experimental and DFT study. Catalysis Today (Article
In Press) (https://doi.org/10.1016/j.cattod.2017.05.021).
Samsudin, E.M., Sze, N.G., Ta, Y.W., Tan,
T.L., Abd. Hamid,
S.B. & Joon, C.J. 2015. Evaluation on the
photocatalytic degradation activity of reactive blue 4 using
pure anatase nano-TiO2. Sains
Malaysiana 44(7): 1011-1019.
Sen, S.K., Raut, S., Bandyopadhyay,
P. & Raut, S. 2016. Fungal decolouration
and degradation of azo dyes: A review. Fungal Biology Reviews
30(3): 112-133.
Sullivan, B.P.,
Salmon, D.J. & Meyer, T.J. 1978. Mixed phosphine 2, 2’-bipyridine
complexes of ruthenium. Inorganic Chemistry 17(12):
3334-3341.
Tan, S.S. &
Kassim, M.B. 2015. Structure and spectroscopic properties
of ruthenium(II) bipyridyl
N-benzoyl-N’-(1,10- phenanthrolin-5-Yl)-thiourea.
AIP Conference Proceedings 50010(II): 50010.
Tan, S.S., Ng,
K.H., Mark-Lee, W.F., Minggu, L.J.
& Kassim, M.B. 2014. Photocatalytic degradation of bromothymol
blue by novel ruthenium (II) complex. IET Seminar
Digest CP659: 1-5.
Wang, Z., Liu,
B., Xie, Z., Li, Y. & Shen, Z.Y.
2016. Preparation and
photocatalytic properties of RuO2/TiO2
composite nanotube arrays. Ceramics International
42(12): 13664- 13669.
Yin, Y.C., Kait, C.F., Fatimah, H., Wilfred, C., Taha,
M.F.B. & Yunus, N.B. 2017. Preparation and
characterization of Mg/TiO2 for visible light photooxidative-extractive deep desulfurization. Sains Malaysiana 46(3):
493-501.
*Pengarang
untuk surat-menyurat;
email: mb_kassim@ukm.edu.my