Sains Malaysiana 46(12)(2017): 2461–2467

http://dx.doi.org/10.17576/jsm-2017-4612-23

 

Sintesis, Pencirian Spektroskopi dan Sifat Fotomangkin Rutenium(II) Bis(bipiridil)-2-(1H-pirazol-3-il)piridil

(Synthesis, Spectroscopy and Photocatalytic Property of Ruthenium(II) Bis(bipyridyl)-2-(1H-pyrazol-3-yl)pyridyl)

 

WUN FUI MARK-LEE1, KIM HANG NG2, LORNA JEFFERY MINGGU2, KHUZAIMAH ARIFIN2 & MOHAMMAD BIN KASSIM1,2*

 

1Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 30 Jun 2016/Diterima: 2 Ogos 2017

 

ABSTRAK

Kompleks Ru(II), [Ru(bpy)2(pypzH)](PF6)2 dengan bpy = 2,2’-bipiridil dan pypzH= 2-(1H-pirazol-3-il)piridin, telah berjaya disintesis dan dicirikan dengan teknik spektroskopi transformasi Fourier inframerah (FTIR), ultralembayung dan cahaya nampak (UV-Vis), resonans magnet nukleus (RMN), serta spektrometer jisim. Pengiraan dengan kaedah teori fungsi ketumpatan (DFT) dan DFT bersandar masa (TD) telah dijalankan untuk membangunkan struktur optimum dan elektronik kompleks Ru(II). Data yang diperoleh menunjukkan orbital molekul terisi dengan tenaga tertinggi (HOMO) disetempatkan pada logam Ru(II) dan ligan pypzH, manakala orbital molekul tidak terisi dengan tenaga terendah (LUMO) didapati tersebar secara menyeluruh pada kedua-dua struktur ligan bpy. Aktiviti fotomangkin kompleks telah diuji terhadap penguruaian pewarna tekstil bromotimol biru (BTB) disebabkan aktiviti foto [Ru(bpy)2(pypzH)](PF6)2 di bawah sinaran lampu xenon 450W (AM 1.5, penapis inframerah). Kadar dan tertib tindak balas foto-uraian BTB dikenal pasti dan dibincangkan bersama dengan mekanisma foto-uraian BTB.

 

Kata kunci: Bromotimol biru; DFT; fotomangkin; piridin-pirazol; rutenium bis-bipiridil

 

ABSTRACT

Complexes [Ru(bpy)2(pypzH)](PF6)2 where bpy = 2,2’-bipyridyl and pypzH= 2-(1H-pyrazol-3-yl)piridine was synthesised and characterised with spectroscopic techniques including Fourier transform infrared (FTIR), UV-visible (UV-Vis) and nuclear magnetic resonance (NMR) and mass spectrometry. Density functional theory (DFT) and time-dependent (TD) DFT calculations were carried out to study the structural and electronic features of the Ru(II) complex. The calculations showed the highest-occupied molecular orbital (HOMO) is mainly localised at the Ru(II) centre and pypzH ligand, while the lowest-unoccupied molecular orbital (LUMO) is dominantly spread across both bpy ligands. The photocatalytic activity was tested with a textile dye derivative, bromothymol blue (BTB) that showed the degradation of the dye by the photocatalytic action of [Ru(bpy)2(pypzH)](PF6)2 under light irradiation with a xenon lamp (AM 1.5, infrared filter). The rate and order of BTB photodegradation reaction were established and the mechanism of the photodegradation of BTB was discussed.

 

Keywords: Bromothymol blue; DFT; photocatalyst; piridine-pyrazole; ruthenium bis-bipyridyl

RUJUKAN

Agarwal, S., Sadegh, H., Monajjemi, M., Hamdy, A.S., Ali, G.A.M., Memar, A.O.H., Shahryari-Ghoshekandi, R. Tyagi, I. & Gupta, V.K. 2016. Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol. Journal of Molecular Liquids 218: 191-197.

Amoroso, A.J., Thomson, A.M.C., Jeffery, J.C., Jones, P.L., McCleverty, J.A. & Ward, M.D. 1994. Synthesis of the new tripodal ligand Tris-[3-(2’-pyridyl)pyrazol-l-yl]hydroborate, and the crystal structure of its europium(III) complex. European Journal of Neuroscience (24): 2751-2752.

Ayob, M.T.M., Mohd, H.M.K., Rahman, I.A., Mohamed, F., Hidzir, N.M. & Radiman, S. 2016. Pertumbuhan dan penambahbaikan nanokomposit Ag-ZnO untuk aktiviti fotomangkin. Sains Malaysiana 45(8): 1265-1273.

Becke, A.D. 1993. Density functional thermochemistry III the role of exact exchange. Journal of Chemical Physics 98: 5648-5652.

Becke, A.D. 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A 38(6): 3098-3100.

Bessegato, G.G., Cardoso, J.C., da Silva, B.F. & Zanoni, M.V.B. 2016. Combination of photoelectrocatalysis and ozonation: A novel and powerful approach applied in acid yellow 1 mineralization. Applied Catalysis B: Environmental 180: 161-168.

Bock, C.R., Connor, J.A., Gutierrez, A.R., Meyer, T.J., Whitten, D.G., Sullivan, B.P. & Nagle, J.K. 1979. Estimation of excited-state redox potentials by electron-transfer quenching. Application of electron-transfer theory to excited-state redox processes. Journal of the American Chemical Society 101: 4815-4824.

Boyer, S.M., Liu, J., Zhang, S., Ehrlich, M.I., McCarthy, D.L., Tong, L., DeCoste, J.B. Bernier, W.E. & Jones, W.E. 2016. The role of ruthenium photosensitizers in the degradation of phenazopyridine with TiO2 electrospun fibers. Journal of Photochemistry and Photobiology A: Chemistry 329: 46-53.

Cheung, S.T.C., Fung, A.K.M. & Lam, M.H.W. 1998. Visible photosensitization of TiO2-photodegradation of CCl4 in aqueous medium. Chemosphere 36(11): 2461-2473.

Cossi, M., Rega, N., Scalmani, G. & Barone, V. 2003. Molecules in solution with the C-PCM solvation model. Journal of Computational Chemistry 24(6): 669-681.

Davidson, E.R. & Feller, D. 1986. Basis set selection for molecular calculations. Chemical Reviews 86(4): 681-696.

Eskelinen, E., Luukkanen, S., Haukka, M., Ahlgrén, M. & Pakkanen, T.A. 2000. Redox and photochemical behaviour of ruthenium(II) complexes with H2dcbpy ligand (H2dcbpy = 2,2-bipyridine-4,4-dicarboxylic acid). Journal of the Chemical Society, Dalton Transactions 16: 2745-2752.

Fui, M.L.W., Hang, N.K., Arifin, K., Minggu, L.J. & Kassim, M.B. 2016. Photocatalytic degradation of bromothymol blue with ruthenium(II) bipyridyl complex in aqueous basic solution. AIP Conference Proceedings 1784(II): 1-6.

Fung, A.K.M., Chiu, B.K.W. & Lam, M.H.W. 2003. Surface modification of TiO2 by a ruthenium(II) polypyridyl complex via silyl-linkage for the sensitized photocatalytic degradation of carbon tetrachloride by visible irradiation. Water Research 37(8): 1939-1947.

Gumus, D. & Akbal, F. 2011. Photocatalytic degradation of textile dye and wastewater. Water Air and Soil Pollution 216: 117-124.

Hachem, C., Bocquillon, F., Zahraa, O. & Bouchy, M. 2001. Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes and Pigments 49(2): 117-125.

Han, Z., Liao, L., Wu, Y., Pan, H., Shen, S. & Chen, J. 2012. Synthesis and photocatalytic application of oriented hierarchical ZnO flower-rod architectures. Journal of Hazardous Materials 217-218: 100-106.

Hang, N.K., Minggu, L.J., Hj. Jumali, M.H. & Kassim, M.B. 2012. Nickel-doped tungsten trioxide photoelectrodes for photoelectrochemical water splitting reaction. Sains Malaysiana 41(7): 893-899.

He, W.L., Chen, J.L., Chen, M. & Qian, D.J. 2016. Interfacial self-assembly, characterization, electrochemical, and photo-catalytic properties of porphyrin-ruthenium complex/ polyoxomelate triad hybrid multilayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 509: 1-10.

Hehre, W.J., Radom, L., Schleyer, P.V.R. & Pople, J.A. 1986. Ab initio molecular orbital theory. Accounts of Chemical Research 9: 399-406.

Hu, F., Fang, C., Wang, Z., Liu, C., Zhu, B. & Zhu, L. 2017. Poly (N-vinyl imidazole) gel composite porous membranes for rapid separation of dyes through permeating adsorption. Separation and Purification Technology 188: 1-10.

Jin, W., Wang, L. & Yu, Z. 2012. Supporting information for: A highly actve ruthenium(II) pyrazolyl-pyridyl-pyrazole complex catalyst for transfer hydrogenation of ketones. Organometallics 31(II): 5664-5667.

Khalik, W.F., Ho, L.N., Ong, S.A., Wong, Y.S., Yusoff, N.A. & Ridwan, F. 2015. Decolorization and mineralization of batik wastewater through solar photocatalytic process. Sains Malaysiana 44(4): 607-612.

Lee, C., Yang, W. & Parr, R. 1988. Development of the Colle- Salvetti correlation energy formula into a functional of the electron density. Physical Review B 37(2): 785-789.

Li, J., Zhao, Z., Li, D., Tang, X., Feng, H., Qi, W. & Wang, Q. 2017. Multifunctional walnut shell layer used for oil/water mixtures separation and dyes adsorption. Applied Surface Science 419: 869-874.

Mahon, M.J., Pillai, S.C., Kelly, J.M. & Gill, L.W. 2017. Solar photocatalytic disinfection of E. coli and bacteriophages MS2, ΦX174 and PR772 using TiO2, ZnO and ruthenium based complexes in a continuous flow system. Journal of Photochemistry and Photobiology B: Biology 170: 79-90.

Miertuš, S., Scrocco, E. & Tomasi, J. 1981. Electrostatic interaction of a solute with a continuum. A direct utilizaion of Ab initio molecular potentials for the prevision of solvent effects. Chemical Physics 55(1): 117-129.

Mun, L.K., Abdullah, A.H., Hussein, M.Z. & Zainal, Z. 2014. Synthesis and photocatalysis of ZnO/γ-Fe2O3 nanocomposite in degrading herbicide 2,4-dichlorophenoxyacetic acid. Sains Malaysiana 43(3): 437-441.

Ng, K.H., Minggu, L.J., Mark-Lee, W.F., Arifin, K., Jumali, M.H.H. & Kassim, M.B. 2017. A new method for the fabrication of a bilayer WO3/Fe2O3 photoelectrode for enhanced photoelectrochemical performance. Materials Research Bulletin 98: 47-52.

Paz, A., Carballo, J., Pérez, M.J. & Domínguez, J.M. 2017. Biological treatment of model dyes and textile wastewaters. Chemosphere 181: 168-177.

Prier, C.K., Rankic, D.A. & MacMillan, D.W.C. 2013. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chemical Reviews 113(7): 5322-5363.

Rozenel, S.S., Azpilcueta, C.R., Flores-Leonar, M.M., Rebolledo- Chávez, J.P.F., Ortiz-Frade, L., Amador-Bedolla, C. & Martin, E. 2017. Ruthenium tris bipyridine derivatives and their photocatalytic activity in [4+2] cycloadditions. An experimental and DFT study. Catalysis Today (Article In Press) (https://doi.org/10.1016/j.cattod.2017.05.021).

Samsudin, E.M., Sze, N.G., Ta, Y.W., Tan, T.L., Abd. Hamid, S.B. & Joon, C.J. 2015. Evaluation on the photocatalytic degradation activity of reactive blue 4 using pure anatase nano-TiO2. Sains Malaysiana 44(7): 1011-1019.

Sen, S.K., Raut, S., Bandyopadhyay, P. & Raut, S. 2016. Fungal decolouration and degradation of azo dyes: A review. Fungal Biology Reviews 30(3): 112-133.

Sullivan, B.P., Salmon, D.J. & Meyer, T.J. 1978. Mixed phosphine 2, 2’-bipyridine complexes of ruthenium. Inorganic Chemistry 17(12): 3334-3341.

Tan, S.S. & Kassim, M.B. 2015. Structure and spectroscopic properties of ruthenium(II) bipyridyl N-benzoyl-N’-(1,10- phenanthrolin-5-Yl)-thiourea. AIP Conference Proceedings 50010(II): 50010.

Tan, S.S., Ng, K.H., Mark-Lee, W.F., Minggu, L.J. & Kassim, M.B. 2014. Photocatalytic degradation of bromothymol blue by novel ruthenium (II) complex. IET Seminar Digest CP659: 1-5.

Wang, Z., Liu, B., Xie, Z., Li, Y. & Shen, Z.Y. 2016. Preparation and photocatalytic properties of RuO2/TiO2 composite nanotube arrays. Ceramics International 42(12): 13664- 13669.

Yin, Y.C., Kait, C.F., Fatimah, H., Wilfred, C., Taha, M.F.B. & Yunus, N.B. 2017. Preparation and characterization of Mg/TiO2 for visible light photooxidative-extractive deep desulfurization. Sains Malaysiana 46(3): 493-501.

 

*Pengarang untuk surat-menyurat; email: mb_kassim@ukm.edu.my

 

 

 

 

 

 

sebelumnya