Sains Malaysiana 46(12)(2017): 2477–2488
http://dx.doi.org/10.17576/jsm-2017-4612-25
Effects of Speech Phonological Features
during Passive Perception on Cortical Auditory Evoked Potential
in Sensorineural Hearing Loss
(Kesan Ciri Fonologi Pertuturan
semasa Persepsi
Pasif pada Korteks
Auditori Rangsang
Potensi dalam Kehilangan
Pendengaran Sensorineural)
HUA NONG
TING1*,
ABDUL
RAUF
A.
BAKAR1, JAYASREE SANTHOSH2,3, MOHAMMED
G. AL-ZIDI1,
IBRAHIM
AMER
IBRAHIM4
& NG SIEW CHEOK1
1Department of Biomedical Engineering,
Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur,
Federal Territory, Malaysia
2Department of Computer Engineering
& Computer Science, School of Science and Engineering
Manipal International University, 71800
Nilai, Negeri Sembilan Darul Khusus, Malaysia
3Centre for Biomedical Engineering,
Indian Institute of Technology-Delhi, New Delhi, India
4Department of Electrical Engineering,
Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur,
Federal Territory,Malaysia
Diserahkan: 16 Julai
2016/Diterima: 4 April 2017
ABSTRACT
The deficiency in the human
auditory system of individuals suffering from sensorineural
hearing loss (SNHL)
is known to be associated with the difficulty in detecting of
various speech phonological features that are frequently related to
speech perception. This study investigated the effects of speech
articulation features on the amplitude and latency of cortical
auditory evoked potential (CAEP)
components. The speech articulation features included the placing
contrast and voicing contrast. 12 Malay subjects with normal
hearing and 12 Malay subjects with SNHL were recruited for the study. The CAEPs
response recorded at higher amplitude with longer latency when
stimulated by voicing contrast cues compared to that of the
placing contrast. Subjects with SNHL
elicited greater amplitude with prolonged latencies
in the majority of the CAEP components in both speech stimuli.
The existence of different frequency spectral and time-varying
acoustic cues of the speech stimuli was reflected by the CAEPs
response strength and timing. We anticipate that the CAEPs
responses could equip audiologist and clinicians with useful
knowledge, concerning the potential deprivation experience by
hearing impaired individuals, in auditory passive perception.
This would help to determine what type of speech stimuli that
might be useful in measuring speech perception abilities, especially
in Malay Malaysian ethic group, for choosing a better rehabilitation
program, since no such study conducted for evaluating speech
perception among Malaysian clinical population.
Keywords: Consonant-vowel (CV);
cortical auditory evoked potential (CAEP); electroencephalography
(EEG);
mismatch negativity (MMN); sensorineural hearing loss (SNHL)
ABSTRAK
Kekurangan dalam sistem
auditori manusia terhadap individu yang mengalami kehilangan pendengaran sensorineural (SNHL)
diketahui melalui
kesukaran dalam mengesan pelbagai ciri ucapan fonologi
yang sering berkait-rapat
dengan persepsi pertuturan. Kajian ini
mengetengahkan kesan
ucapan artikulasi terhadap amplitud dan kependaman pada komponen potensi
terbangkit auditori
kortikal (CAEP). Ciri ucapan artikulasi termasuk kontras perletakan dan kontras suara. Seramai 12 individu normal tahap pendengaran dan 12 individu yang memiliki SNHL
telah direkrut
untuk kajian
ini. Tindak balas CAEP terhadap isyarat kontras suara direkodkan
pada amplitud
lebih tinggi serta
kependaman lebih
lama berbanding isyarat kontras perletakkan. Individu yang memiliki SNHL menghasilkan
amplitud lebih
tinggi berserta kependaman lebih panjang dalam kebanyakan
komponen CAEPs dan
ini meliputi
kedua-dua rangsangan ucapan. Kewujudan perbezaan spektrum
frekuensi dan
beza-masa isyarat akustik pada rangsangan
ucapan dicerminkan
oleh kekuatan tindak
balas dan
tempoh masa CAEPs. Kami menjangkakan bahawa
tindak balas
CAEPs
dapat menyediakan
pengetahuan yang berguna kepada pakar audiologi
dan doktor
dalam memahami pengurangan potensi yang dihidapi oleh individu
persepsi auditori
terjejas. Ini dapat membantu untuk menentukan apa jenis
ransangan ucapan
yang bersesuaian dalam menilai keupayaan persepsi ucapan, terutamanya dalam kalangan etnik Melayu di Malaysia seterusnya memilih program pemulihan yang lebih baik, kerana
tidak ada
kajian seumpama ini yang pernah dijalanlan untuk menilai persepsi ucapan dalam kalangan
penduduk klinikal
Malaysia.
Kata kunci: Elektroensefalografi (EEG); hilang saraf deria pendengaran
(SNHL); konsonan-vokal
(CV); korteks auditori rangsang potensi (CAEP); kenegatifan tak padan (MMN)
RUJUKAN
Abbs, J.H. & Sussman, H.M. 1971. Neurophysiological
feature detectors and speech perception: A discussion of theoretical
implications. Journal of Speech, Language, and Hearing Research
14(1): 23-36.
Acharya, U.R., Sudarshan, V.K., Adeli, H., Santhosh, J., Koh, J.E.,
Puthankatti, S.D., & Adeli,
A. 2015. A novel depression diagnosis index using nonlinear features in EEG
signals. European Neurology 74(1-2): 79-83.
Acharya, U.R., Sree, S.V., Swapna, G., Martis, R.J. & Suri,
J.S. 2013. Automated EEG analysis of epilepsy: A review. Knowledge-Based
Systems 45: 147-165.
Acharya,
U.R., Molinari, F., Sree, S.V., Chattopadhyay,
S., Ng, K.H., & Suri, J.S. 2012. Automated
diagnosis of epileptic EEG using entropies. Biomedical
Signal Processing and Control 7(4): 401-408.
Acharya, U.R.,
Sree, S.V., Chattopadhyay, S., Yu, W. & Ang, P.C.A. 2011. Application of recurrence quantification
analysis for the automated identification of epileptic EEG signals. International
Journal of Neural Systems 21(03): 199-211.
Agung, K., Purdy, S.C.,
McMahon, C.M. & Newall, P. 2006. The use of cortical auditory
evoked potentials to evaluate neural encoding of speech sounds
in adults. Journal of the American Academy of Audiology 17(8):
559-572.
Ali,
R., Wahab, S., Hamid, A. & Rahman,
A. 2013. Neuropsychological profile at three months post injury in patients
with traumatic brain injury. Sains
Malaysiana 42(3): 403-408.
Anderson,
S., Parbery-Clark, A., White-Schwoch,
T., Drehobl, S. & Kraus, N. 2013. Effects of hearing loss on the subcortical representation of speech
cues. The Journal of the Acoustical Society of America
133(5): 3030-3038.
Arsenault,
J.S. & Buchsbaum, B.R. 2015. Distributed neural representations of phonological features during
speech perception. The Journal of Neuroscience 35(2):
634-642.
Babloyantz,
A., Salazar, J. & Nicolis, C.
1985. Evidence of chaotic dynamics of brain activity during the sleep cycle.
Physics Letters A 111(3): 152-156.
Becker,
F. & Reinvang, I. 2013. Identification
of target tones and speech sounds studied with event-related
potentials: Language-related changes in aphasia. Aphasiology
27(1): 20-40.
Becker,
F. & Reinvang, I. 2007. Mismatch negativity
elicited by tones and speech sounds: Changed topographical distribution
in aphasia. Brain and Language 100(1): 69-78.
Bidelman, G.M. 2015. Towards
an optimal paradigm for simultaneously recording cortical and
brainstem auditory evoked potentials. Journal of Neuroscience
Methods 241: 94-100.
Bien, H., Hanulikova, A., Weber, A. & Zwitserlood,
P. 2016. A neurophysiological investigation
of non-native phoneme perception by Dutch and German listeners.
Frontiers in Psychology 7: 56.
Boothroyd,
A. 1993.
Speech perception, sensorineural hearing loss,
and hearing aids. Acoustical Factors
Affecting Hearing Aid Performance 2: 277-279.
Carpenter,
A.L. & Shahin, A.J. 2013. Development of
the N1-P2 auditory evoked response to amplitude rise time and
rate of formant transition of speech sounds. Neuroscience
Letters 544: 56-61.
Chua, K.C., Chandran, V., Acharya, U.R. & Lim, C.M. 2011. Application of higher order spectra to identify epileptic EEG.
Journal of Medical Systems 35(6): 1563-1571.
Chua, K., Chandran, V., Rajendra Acharya,
U. & Lim, C. 2009. Analysis of epileptic EEG signals using
higher order spectra. Journal of Medical Engineering &
Technology 33(1): 42-50.
Davies,
P.L., Chang, W.P. & Gavin, W.J. 2010. Middle and late latency ERP components
discriminate between adults, typical children, and children
with sensory processing disorders. Frontiers in Integrative
Neuroscience 4: 16.
Duncan, C.C., Barry,
R.J., Connolly, J.F., Fischer, C., Michie,
P.T., Näätänen, R., Polich,
J., Reinvang, I. & Van Petten,
C. 2009. Event-related potentials in clinical research: Guidelines
for eliciting, recording, and quantifying mismatch negativity,
P300, and N400. Clinical Neurophysiology 120(11): 1883-
1908.
Folstein,
M.F., Folstein, S.E. & McHugh,
P.R. 1975. “Mini-mental state”:
A practical method for grading the cognitive state of patients
for the clinician. Journal of Psychiatric Research 12(3):
189-198.
Jaramillo,
M., Ilvonen, T., Kujala,
T., Alku, P., Tervaniemi,
M. & Alho, K. 2001. Are different
kinds of acoustic features processed differently for speech
and non-speech sounds? Cognitive Brain Research 12(3):
459-466.
Korczak,
P.A. & Stapells, D.R. 2010. Effects of various articulatory features of speech on cortical event-related
potentials and behavioral measures of speech-sound processing.
Ear and Hearing 31(4): 491-504.
Lehnertz, K. 2008. Epilepsy and nonlinear dynamics. Journal of Biological Physics
34(3-4): 253-266.
Li, Z., Gu, R., Zeng, X., Zhong, W., Qi, M. & Cen, J. 2016. Attentional bias in
patients with decompensated Tinnitus: Prima facie evidence from
event-related potentials. Audiology and Neurotology
21(1): 38-44.
Luck, S. 2005.
An Introduction to Event-Related Potentials and their Neural Origins.
(Chapter 1). Cambridge: MIT Press.
Mormann,
F., Kreuz, T., Rieke,
C., Andrzejak, R.G., Kraskov, A., David,
P., Elger, C.E. & Lehnertz,
K. 2005.
On the predictability of epileptic seizures.
Clinical Neurophysiology 116(3): 569-587.
Mormann,
F., Kreuz, T., Andrzejak,
R.G., David, P., Lehnertz, K. &
Elger, C.E. 2003. Epileptic seizures are preceded by a decrease
in synchronization. Epilepsy Research 53(3): 173-185.
Näätänen, R. 2001. The
perception of speech sounds by the human brain as reflected
by the mismatch negativity (MMN) and its magnetic equivalent
(MMNm). Psychophysiology 38(1):
1-21.
Näätänen, R. 1995. The
mismatch negativity: A powerful tool for cognitive neuroscience.
Ear and Hearing 16(1): 6-18.
Näätänen, R. 1992. Attention
and Brain Function. Hillsdale, New Jersey: Lawrence Erlbaum
Associates.
Näätänen,
R. & Escera, C. 2000. Mismatch negativity:
Clinical and other applications. Audiology and Neurotology
5(3-4): 105-110.
Näätänen,
R. & Picton, T. 1987. The N1 wave of
the human electric and magnetic response to sound: A review
and an analysis of the component structure. Psychophysiology
24(4): 375-425.
Näätänen,
R., Paavilainen, P., Titinen,
H., Jiang, D. & Alho, K. 1993. Attention and
mismatch negativity. Psychophysiology 30(5): 436-450.
Oates,
P.A., Kurtzberg, D. & Stapells,
D.R. 2002.
Effects of sensorineural hearing loss on cortical
event-related potential and behavioral measures of speech-sound
processing. Ear and Hearing 23(5): 399-415.
Picton,
T., Bentin, S., Berg, P., Donchin,
E., Hillyard, S., Miller, G.A., Ritter,
W., Ruchkin, D.S., Rugg, M.D. &
Taylor, M.J. 2000.
Guidelines for using human event-related potentials to study
cognition: Recording standards and publication criteria. Psychophysiology
37(2): 127-152.
Picton,
T.W., Lins, O.G. & Scherg, M. 1995. The recording and analysis
of event-related potentials. Handbook of Neuropsychology.
Vol. 10, edited by Boller, F. & Grafman, J. Chapter 1.
Pratt,
H., Starr, A., Michalewski, H.J.,
Dimitrijevic, A., Bleich,
N. & Mittelman, N. 2009.
Auditory-evoked potentials to frequency increase
and decrease of high-and low-frequency tones. Clinical
Neurophysiology 120(2): 360-373.
Reis,
A.C.M.B. & Iório, M.C.M. 2007. P300 in subjects with hearing loss. Pró-Fono
Revista de Atualização
Científica 19(1): 113-122.
Ruffini, G., Dunne, S.,
Farrés, E., Cester,
I., Watts, P.C., Ravi, S., Silva, P., Grau,
C., Fuentemilla, L., Marco-Pallares,
J. & Vandecasteele, B. 2007. ENOBIO
Dry Electrophysiology Electrode; First Human Trial Plus
Wireless Electrode System. Paper presented at the Engineering
in Medicine and Biology Society, 2007. EMBS
2007. 29th Annual International Conference of the IEEE.
Ruffini, G., Dunne, S., Farrés, E., Marco-Pallarés, J.,
Ray, C., Mendoza, E., Ray, C., Mendoza, E., Silva, R. &
Grau, C. 2006. A
dry electrophysiology electrode using CNT arrays. Sensors
and Actuators A: Physical 132(1): 34-41.
Sams, M., Paavilainen, P., Alho, K. &
Näätänen, R. 1985. Auditory frequency discrimination
and event-related potentials. Electroencephalography
and Clinical Neurophysiology/ Evoked Potentials Section 62(6):
437-448.
Scharinger, M., Monahan,
P.J. & Idsardi, W.J. 2016. Linguistic category structure influences
early auditory processing: Converging evidence from mismatch
responses and cortical oscillations. NeuroImage
128: 293-301.
Schröder, A., van Diepen, R., Mazaheri, A., Petropoulos-
Petalas, D., de Amesti,
V.S., Vulink, N. & Denys, D. 2014. Diminished N1
auditory evoked potentials to oddball stimuli in misophonia
patients. Frontiers in Behavioral Neuroscience 8:
123.
Siti Zamratol-Mai
Sarah Mukari, Nashrah
Maamor, Wan Syafira Ishak & Wan Fazlina Wan Hashim. 2016. Hearing loss and risk factors among community
dwelling older adults in Selangor. Sains
Malaysiana 45(9): 1405-1411.
Song, I.H., Lee,
D.S. & Kim, S.I. 2004.
Recurrence quantification analysis of sleep
electoencephalogram in sleep apnea syndrome in humans.
Neuroscience Letter 366(2): 148-153.
Stapells, D. 2002. Cortical
event-related potentials to auditory stimuli. Handbook
of Clinical Audiology 5: 378-406.
Steinhauer, K. 2014. Event-related potentials
(ERPs) in second language research: A brief introduction to
the technique, a selected review, and an invitation to reconsider
critical periods in L2. Applied Linguistics
35(4): 393-417.
Tavabi, K., Elling,
L., Dobel, C., Pantev,
C. & Zwitserlood, P. 2009. Effects
of place of articulation changes on auditory neural activity:
A magnetoencephalography study. PloS
One 4(2): 4452-4452.
Ting, H.N., Chia,
S.Y., Hamid, B.A. & Mukari, S.Z.M.S.
2011. Acoustic characteristics
of vowels by normal Malaysian Malay young adults. Journal
of Voice 25(6): 305-309.
Tremblay, K.L., Piskosz, M. & Souza, P. 2003. Effects
of age and age-related hearing loss on the neural representation
of speech cues. Clinical Neurophysiology 114(7):
1332-1343.
Wang, T., Lin,
L., Zhang, A., Peng, X. & Zhan, C.a.A.
2013. EMD-based EEG
signal enhancement for auditory evoked potential recovery under
high stimulus-rate paradigm. Biomedical Signal Processing
and Control 8(6): 858-868.
Wunderlich, J.L. & Cone-Wesson,
B.K. 2001.
Effects of stimulus frequency and complexity
on the mismatch negativity and other components of the cortical
auditory-evoked potential. The Journal of the Acoustical
Society of America 109(4): 1526-1537.
Wunderlich, J.L., Cone-Wesson,
B.K. & Shepherd, R. 2006. Maturation of the cortical auditory
evoked potential in infants and young children. Hearing Research 212(1): 185-202.
Ylinen, S., Shestakova, A., Huotilainen, M.,
Alku, P. & Näätänen, R. 2006. Mismatch negativity (MMN) elicited
by changes in phoneme length: A cross-linguistic study. Brain
Research 1072(1): 175-185.
*Pengarang
untuk surat-menyurat;
email: tinghn@um.edu.my