Sains Malaysiana 46(1)(2017): 157–165
http://dx.doi.org/10.17576/jsm-2017-4601-20
Adsorption of Heavy Metal Ions on Surface
of Functionalized Oil Palm Empty Fruit Bunch Fibres: Single and
Binary Systems
(Penjerapan Ion Logam Berat pada Permukaan Terfungsi
Serabut Tandan Kosong Kelapa Sawit: Sistem Tunggal dan Penduaan)
MOHD SHAIFUL SAJAB2*, CHIN HUA CHIA1, SARANI ZAKARIA1 & MIKA SILLANPÄÄ3
1School of Applied Physics, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia
43600 Bangi,
Selangor Darul Ehsan, Malaysia
2Research Center for Sustainable Process Technology (CESPRO),
Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor Darul Ehsan, Malaysia
3Faculty of Technology, Lappeenranta University of Technology,
Patteristonkatu 1,
FI-50100 Mikkeli, Finland
Diserahkan: 28 Mac 2015/Diterima: 26
Januari 2016
ABSTRACT
The functionalization of surface
charges on oil palm empty fruit bunch (EFB) fibers was modified by
grafted carboxylic acid and polymer amine groups. Single and binary adsorption
of Cu(II), Ni(II), Mo(VI) and As(V) were investigated
by competitiveness in the adsorbents. The mechanism of each metal ion was
deliberately studied on kinetics-diffusion (intraparticle diffusion) and
isotherm adsorption models (Langmuir and Freundlich). Competitiveness of metal
ions was found in the selectivity of Cu(II) >
Ni(II) and Mo(VI) > As(V) in the binary solution. The regeneration of
adsorbents was performed up to five cycles of an adsorption/desorption process
and the reduction of adsorption performance was less than 14.5%. Therefore,
this promises low-cost adsorbents for metal ion uptake, showing potential for
removal and recovery in industrial wastewater treatment.
Keywords: Binary adsorption;
desorption; isotherm; kinetics; low-cost adsorbent
ABSTRAK
Pemfungsian cas
permukaan pada serabut kosong tandan kelapa sawit (EFB)
telah terubah suai dengan cantuman kumpulan asid karboksil dan polimer
amina. Penjerapan tunggal dan penduaan bagi Cu(II), Ni(II), Mo(VI)
dan As(V) telah dikaji dengan persaingan penjerapan dalam bahan
penjerap. Mekanisme bagi setiap logam berat
telah dipertimbangkan ke atas kinetik-resapan (resapan intrazarah)
dan model penjerapan isoterma (Langmuir dan Frendulich).
Persaingan ion logam berat telah dijumpai pada pemilihan bagi Cu(II) > Ni(II) dan Mo(VI) > As(V) dalam larutan penduaan.
Penjanaan semula bahan penjerap telah dijalankan sehingga lima kali kitaran proses penjerapan/nyahjerapan dan pengurangan
prestasi penjerapan adalah kurang dari 14.5%. Oleh itu, ia menjanjikan bahan penjerap kos-rendah bagi pengambilan
ion logam, menunjukan potensi bagi penyingkiran dan pemulihan dalam
rawatan air buangan industri.
Kata
kunci: Bahan penjerap kos-rendah; isoterma; kinetik; nyahjerapan; penjerapan
penduaan
RUJUKAN
Akbari,
M., Hallajisani, A., Keshtkar, A.R., Shahbeig, H., Ghorbanian, S.A. 2015. Equilibrium and kinetic
study and modeling of Cu(II) and Co(II) synergistic biosorption from
Cu(II)-Co(II) single and binary mixtures on brown algae C. indica. J. Env.
Chem. Eng. 3: 140-149.
Ayhan D. 2008. Heavy
metal adsorption onto agro-based waste materials: A review. J. Hazard.
Mater. 157: 220-229.
Babel, S. &
Kurniawan, T.A. 2003. Low-cost adsorbents for heavy metals uptake from
contaminated water: A review. J. Hazard. Mater. 97: 219-243.
Bailey,
S.E., Olin, T.J., Bricka, R.M. & Adrian, D.D. 1999. A
review of potentially low-cost sorbents for heavy metals. Water. Res. 33: 2469-2479.
Demirbas,
A., Sari, A. & Isildak, O. 2006. Adsorption thermodynamics of
stearic acid onto bentonite. J. Hazard. Mater. 135: 226-231.
Freundlich, H.M.F. 1906. Over the adsorption in solution. J. Phys. Chem. 57A:
385-470.
Hardoy, J.E., Mitlin, D.
& Satterthwaite, D. 1992. Environmental Problems in
Third World Cities. London: Earthscan.
Hokkanen,
S., Repo, E. & Sillanpää, M. 2009. Competitive biosorption of Pb2+, Cu2+
and Zn2+ ions from aqueous solutions onto valonia tannin resin. J. Hazard.
Mater. 166: 1488-1494.
Hu, H., Zhang, J., Lu,
K. & Tian, Y. 2015. Characterization of Acidosasa
edulis shoot shell and its biosorption of copper ions from aqueous
solution. J. Env. Chem. Eng. 3: 357-364.
Langmuir, I. 1916. The constitution and fundamental properties of solids and liquids. Part. I: Solids. J. Am. Chem. Soc. 39: 2221-2295.
Lide, D.R. 1998. Handbook of Chemistry and Physics. Boca Raton:
CRC Press.
Mahamadi,
C. & Nharingo, T. 2010. Competetitive adsorption of Pb2+, Cd2+ and Zn
2+ ions onto Eichhornia crassipes in binary and ternary systems. Bioresour.
Technol. 101: 859-864.
Mall,
I.D., Srivastava, V.C., Kumar, G.V.A. & Mishra, I.M. 2006. Characterization and
utilization of mesoporous fertilizer plant waste carbon for adsorptive removal
of dyes from aqueous solution. Colloid. Surf. A 278: 175-187.
Maiti, A., Basu, J.K.
& De, S. 2012. Experimental and kinetic modeling of As(V)
and As(III) adsorption on treated laterite using synthetic and contaminated
groundwater: Effects of phosphate, silicate and carbonate ions. Chem. Eng.
J. 191: 1-12.
Merrikhpour,
H. & Jalali, M. 2013. Comparative and competitive adsorption of
cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean.
Technol. Environ. Policy. 15: 303-316.
Mohan, D. & Chander,
S. 2000. Single component and multi-component adsorption of metal ions by
activated carbons. Colloid. Surf. A 177: 183-196.
Mohan, D. & Singh,
K.P. 2002. Single- and multi-component adsorption of cadmium and zinc using
activted carbon derived from bagasse: An agricultural waste. Water. Res. 36:
2304-2318.
O’Connell, D.W.,
Birkinshaw, C. & O’Dywer, T.F. 2008. Heavy metal adsorbents prepared from
the modification of cellulose: A review. Bioresour. Technol. 99(15):
6709-6724.
Ofomaja, A.E. 2010.
Intraparticle diffusion process for lead(II)
biosorption onto mansonia wood sawdust. Bioresour. Technol. 101:
5868-5876.
Plazinski,
W. & Rudzinski, W. 2010. Heavy metals binding to
biosorbents. Insights into non-competetitive models
from a simple pH-dependent model. Colloid. Surf. B 80: 133-137.
Qiu, H., Lv, L., Pan,
B.C., Zhang, Q.J., Zhang, W.M. & Zhang, Q.X. 2009. Critical
review in adsorption kinetic models. J. Zhejiang. Univ. Sci. A 10:
716-724.
Sajab, M.S., Chia, C.H.,
Zakaria, S. & Khiew, P.S. 2013. Cationic and anionic modifications of oil
palm empty fruit bunch fibers for the removal of dyes from aqueous solutions. Bioresour.
Technol. 128: 571-577.
Şengil,
I.A. & Özacarb, M. 2013. Removal of heavy metals from aqueous solutions
by succinic anhydride modified mercerized nanocellulose. Chem. Eng. J. 223:
40-47.
Trivedi, P. & Axe,
L. 2001. Predicting divalent metal sorption to hydrous Al, Fe, and Mn oxides. Environ.
Sci. Technol. 35: 1779-1784.
Xiao, B. & Thomas,
K.M. 2004. Competitive adsorption of aqueous metal ions on an oxidized
nanoporous activated carbon. Langmuir 20: 4566-4578.
Wan Ngah, W.S. &
Hanafiah, M.A.K.M. 2008. Removal of heavy metal ions from wastewater by
chemically modified plant wastes as adsorbents: A review. Bioresour.
Technol. 99: 3935-3948.
Wang, X.S. & Li,
Z.Z. 2009. Competitive adsorption of nickel and copper ions
from aqueous solution using nonliving biomass of the marine brown alga Laminaria
japonica. Clean. Soil. Air. Water. 37: 663-668.
Weber, W.J. & Morris, J.C. 1963. Kinetics of adsorption on carbon from solution. J. Sanit.
Eng. Div. Am. Soc. Civ. Engrs. 89: 31-59.
Wu, F.C., Tseng, R.L. & Juang, R.S.
2009. Initial behavior of intraparticle diffusion model used in the description
of adsorption kinetics. Chem. Eng. J. 153: 1-8.
Zakaria, S.,
Ahmadzadeh, A. & Roslan, R. 2013. Flow properties of novolak-type resin made from
liquefaction of oil palm empty fruit bunch (EFB) fibres using sulfuric acid as
a catalyst. BioResources 8(4): 5884-5894.
Zhi-Rong, L., Li-Min,
Z., Peng, W., Kai, Z., Chuang-Xi, W. & Hui-Hua, L. 2008. Competitive adsorption
of heavy metal ions on peat. J. China. Univ. Mining. Technol. 18:
225-260.
*Pengarang untuk
surat-menyurat; email: mohdshaiful@ukm.edu.my
|