Sains Malaysiana 46(1)(2017): 157–165

http://dx.doi.org/10.17576/jsm-2017-4601-20

 

Adsorption of Heavy Metal Ions on Surface of Functionalized Oil Palm Empty Fruit Bunch Fibres: Single and Binary Systems

(Penjerapan Ion Logam Berat pada Permukaan Terfungsi Serabut Tandan Kosong Kelapa Sawit: Sistem Tunggal dan Penduaan)

 

MOHD SHAIFUL SAJAB2*, CHIN HUA CHIA1, SARANI ZAKARIA1 & MIKA SILLANPÄÄ3

 

1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia

 

2Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

3Faculty of Technology, Lappeenranta University of Technology, Patteristonkatu 1,

FI-50100 Mikkeli, Finland

 

Diserahkan: 28 Mac 2015/Diterima: 26 Januari 2016

 

ABSTRACT

The functionalization of surface charges on oil palm empty fruit bunch (EFB) fibers was modified by grafted carboxylic acid and polymer amine groups. Single and binary adsorption of Cu(II), Ni(II), Mo(VI) and As(V) were investigated by competitiveness in the adsorbents. The mechanism of each metal ion was deliberately studied on kinetics-diffusion (intraparticle diffusion) and isotherm adsorption models (Langmuir and Freundlich). Competitiveness of metal ions was found in the selectivity of Cu(II) > Ni(II) and Mo(VI) > As(V) in the binary solution. The regeneration of adsorbents was performed up to five cycles of an adsorption/desorption process and the reduction of adsorption performance was less than 14.5%. Therefore, this promises low-cost adsorbents for metal ion uptake, showing potential for removal and recovery in industrial wastewater treatment.

 

Keywords: Binary adsorption; desorption; isotherm; kinetics; low-cost adsorbent

 

ABSTRAK

Pemfungsian cas permukaan pada serabut kosong tandan kelapa sawit (EFB) telah terubah suai dengan cantuman kumpulan asid karboksil dan polimer amina. Penjerapan tunggal dan penduaan bagi Cu(II), Ni(II), Mo(VI) dan As(V) telah dikaji dengan persaingan penjerapan dalam bahan penjerap. Mekanisme bagi setiap logam berat telah dipertimbangkan ke atas kinetik-resapan (resapan intrazarah) dan model penjerapan isoterma (Langmuir dan Frendulich). Persaingan ion logam berat telah dijumpai pada pemilihan bagi Cu(II) > Ni(II) dan Mo(VI) > As(V) dalam larutan penduaan. Penjanaan semula bahan penjerap telah dijalankan sehingga lima kali kitaran proses penjerapan/nyahjerapan dan pengurangan prestasi penjerapan adalah kurang dari 14.5%. Oleh itu, ia menjanjikan bahan penjerap kos-rendah bagi pengambilan ion logam, menunjukan potensi bagi penyingkiran dan pemulihan dalam rawatan air buangan industri.

 

Kata kunci: Bahan penjerap kos-rendah; isoterma; kinetik; nyahjerapan; penjerapan penduaan

RUJUKAN

Akbari, M., Hallajisani, A., Keshtkar, A.R., Shahbeig, H., Ghorbanian, S.A. 2015. Equilibrium and kinetic study and modeling of Cu(II) and Co(II) synergistic biosorption from Cu(II)-Co(II) single and binary mixtures on brown algae C. indica. J. Env. Chem. Eng. 3: 140-149.

Ayhan D. 2008. Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 157: 220-229.

Babel, S. & Kurniawan, T.A. 2003. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. 97: 219-243.

Bailey, S.E., Olin, T.J., Bricka, R.M. & Adrian, D.D. 1999. A review of potentially low-cost sorbents for heavy metals. Water. Res. 33: 2469-2479.

Demirbas, A., Sari, A. & Isildak, O. 2006. Adsorption thermodynamics of stearic acid onto bentonite. J. Hazard. Mater. 135: 226-231.

Freundlich, H.M.F. 1906. Over the adsorption in solution. J. Phys. Chem. 57A: 385-470.

Hardoy, J.E., Mitlin, D. & Satterthwaite, D. 1992. Environmental Problems in Third World Cities. London: Earthscan.

Hokkanen, S., Repo, E. & Sillanpää, M. 2009. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. J. Hazard. Mater. 166: 1488-1494.

Hu, H., Zhang, J., Lu, K. & Tian, Y. 2015. Characterization of Acidosasa edulis shoot shell and its biosorption of copper ions from aqueous solution. J. Env. Chem. Eng. 3: 357-364.

Langmuir, I. 1916. The constitution and fundamental properties of solids and liquids. Part. I: Solids. J. Am. Chem. Soc. 39: 2221-2295.

Lide, D.R. 1998. Handbook of Chemistry and Physics. Boca Raton: CRC Press.

Mahamadi, C. & Nharingo, T. 2010. Competetitive adsorption of Pb2+, Cd2+ and Zn 2+ ions onto Eichhornia crassipes in binary and ternary systems. Bioresour. Technol. 101: 859-864.

Mall, I.D., Srivastava, V.C., Kumar, G.V.A. & Mishra, I.M. 2006. Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloid. Surf. A 278: 175-187.

Maiti, A., Basu, J.K. & De, S. 2012. Experimental and kinetic modeling of As(V) and As(III) adsorption on treated laterite using synthetic and contaminated groundwater: Effects of phosphate, silicate and carbonate ions. Chem. Eng. J. 191: 1-12.

Merrikhpour, H. & Jalali, M. 2013. Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean. Technol. Environ. Policy. 15: 303-316.

Mohan, D. & Chander, S. 2000. Single component and multi-component adsorption of metal ions by activated carbons. Colloid. Surf. A 177: 183-196.

Mohan, D. & Singh, K.P. 2002. Single- and multi-component adsorption of cadmium and zinc using activted carbon derived from bagasse: An agricultural waste. Water. Res. 36: 2304-2318.

O’Connell, D.W., Birkinshaw, C. & O’Dywer, T.F. 2008. Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresour. Technol. 99(15): 6709-6724.

Ofomaja, A.E. 2010. Intraparticle diffusion process for lead(II) biosorption onto mansonia wood sawdust. Bioresour. Technol. 101: 5868-5876.

Plazinski, W. & Rudzinski, W. 2010. Heavy metals binding to biosorbents. Insights into non-competetitive models from a simple pH-dependent model. Colloid. Surf. B 80: 133-137.

Qiu, H., Lv, L., Pan, B.C., Zhang, Q.J., Zhang, W.M. & Zhang, Q.X. 2009. Critical review in adsorption kinetic models. J. Zhejiang. Univ. Sci. A 10: 716-724.

Sajab, M.S., Chia, C.H., Zakaria, S. & Khiew, P.S. 2013. Cationic and anionic modifications of oil palm empty fruit bunch fibers for the removal of dyes from aqueous solutions. Bioresour. Technol. 128: 571-577.

Şengil, I.A. & Özacarb, M. 2013. Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem. Eng. J. 223: 40-47.

Trivedi, P. & Axe, L. 2001. Predicting divalent metal sorption to hydrous Al, Fe, and Mn oxides. Environ. Sci. Technol. 35: 1779-1784.

Xiao, B. & Thomas, K.M. 2004. Competitive adsorption of aqueous metal ions on an oxidized nanoporous activated carbon. Langmuir 20: 4566-4578.

Wan Ngah, W.S. & Hanafiah, M.A.K.M. 2008. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 99: 3935-3948.

Wang, X.S. & Li, Z.Z. 2009. Competitive adsorption of nickel and copper ions from aqueous solution using nonliving biomass of the marine brown alga Laminaria japonica. Clean. Soil. Air. Water. 37: 663-668.

Weber, W.J. & Morris, J.C. 1963. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Engrs. 89: 31-59.

Wu, F.C., Tseng, R.L. & Juang, R.S. 2009. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 153: 1-8.

Zakaria, S., Ahmadzadeh, A. & Roslan, R. 2013. Flow properties of novolak-type resin made from liquefaction of oil palm empty fruit bunch (EFB) fibres using sulfuric acid as a catalyst. BioResources 8(4): 5884-5894.

Zhi-Rong, L., Li-Min, Z., Peng, W., Kai, Z., Chuang-Xi, W. & Hui-Hua, L. 2008. Competitive adsorption of heavy metal ions on peat. J. China. Univ. Mining. Technol. 18: 225-260.

 

 

*Pengarang untuk surat-menyurat; email: mohdshaiful@ukm.edu.my

 

 

sebelumnya