Sains Malaysiana 46(1)(2017): 51–58
http://dx.doi.org/10.17576/jsm-2017-4601-07
Biohydrogen Productions from Hydrolysate of
Water Hyacinth Stem (Eichhornia crassipes) Using Anaerobic Mixed
Cultures
(Pengeluaran Biohidrogen daripada Hidrolisat Batang
Keladi Bunting (Eichhornia crassipes)
Menggunakan Kultur Campuran Anaerob)
SAKCHAI PATTRA1*
& SUREEWAN SITTIJUNDA2
1Community Public Health
Program, Faculty of Arts and Science, Chaiyaphum Rajabhat University, Chaiyaphum
36000, Thailand
2Faculty of Environment
and Resource Studies, Mahidol University, Nakhon Pathom 73170
Thailand
Diserahkan: 22 April
2015/Diterima: 14 April 2016
ABSTRACT
Response surface methodology (RSM)
with central composite design (CCD) was applied to optimize
key factors affecting hydrogen production (HP)
from diluted acid hydrolysate of water-hyacinth stem (WHS)
by heat-treated anaerobic sludge in a batch fermentation process. Key factors
affecting namely substrate concentration and initial pH was investigated. The
results indicated that substrate concentration and initial pH had significantly
effects on HP (p<0.05). A maximum HP hydrogen
production rate and hydrogen yield of 182.7 mmol H2/L,
2.81 mmol H2/L h and 0.84 mol H2/mol
hexose were obtained under the optimum conditions i.e. substrate concentration
of 4.06 g/L and initial pH of 5.81. The total energy production from the
fermentative of WHS hydrolysate was 1.97 kJ.
Keywords: Central composite design (CCD);
dilute acid hydrolysis; hydrogen production; response surface methodology (RSM);
water-hyacinth
ABSTRAK
Kaedah permukaan tindak balas (RSM)
dan pusat reka bentuk tergubah (CCD) digunakan untuk mengoptimumkan
faktor utama yang mempengaruhi pengeluaran hidrogen (HP)
daripada hidrolisat asid cair batang keladi bunting (WHS)
melalui enapcemar anaerobik terawat-haba di dalam proses penapaian
kumpulan. Faktor utama yang mempengaruhi kepekatan substrat dan pH awal dikaji.
Keputusan menunjukkan bahawa kepekatan substrat
dan pH awal telah memberi kesan secara signifikan kepada HP
(p<0.05). Kadar pengeluaran hidrogen
HP
maksimum dan hasil hidrogen ialah 182.7 mmol H2/L,
2.81 mmol H2/L h dan 0.84 mol H2/mol
heksosa telah diperoleh pada keadaan optimum iaitu kepekatan substrat
4.06 g/L dan pH awal 5.81. Jumlah pengeluaran
tenaga daripada penapaian WHS hidrolisat adalah 1.97 kJ.
Kata
kunci: Hidrolisis asid cair; kaedah permukaan tindak balas (RSM);
keladi bunting; pengeluaran hidrogen; pusat reka bentuk tergubah (CCD)
RUJUKAN
Abdelhamid,
A.M. & Gabr, A.A. 1991. Evaluation of water hyacinth as feed for ruminants. Archives of Animal Nutrition 41: 754-756.
Antonopoulou,
G., Gavala, H.N., Ioannis, V.S. & Gerasimos, L. 2011. Effect of
substrate concentration on fermentative hydrogen production from sweet sorghum
extract. Int. J. Hydrogen Energy 36: 4843-4851.
APHA.1995. Standard Methods for the Examination of Water and
Wastewater. 19th ed. Washington DC: American Public Health Association.
Aweke, G.
1993. The water hyacinth (Eichhornia crassipes) in
Ethiopia. Bulletin des séances. Academic
royale des Sciences D’outre-mer 39: 399-404.
Cheng, C.L.
& Chang, J.S. 2011. Hydrolysis of lignocellulosic
feedstock by novel cellulases originating from Pseudomonas ps. CL3 for
fermentative hydrogen production. Bioresour. Technol. 102:
8628-8634.
Chong,
M.L., Sabaratnam, V., Shirai, Y. & Hassan, M.A. 2009. Biohydrogen
production from biomass and industrial waste by dark fermentation. Int.
J. Hydrogen Energy 34: 3277-3287.
Fan, X., Li, C., Wang, A. & Yan, Z. 2016. Influence
of surfactant-free ionic liquid microemulsions pretreatment on the composition,
structure and enzymatic hydrolysis of water hyacinth. Bioresour. Technol.
208: 19-23.
Fangkum, A.
& Reungsang, A. 2011. Biohydrogen production from mixed xylose/arabinose at
thermophilic temperature by anaerobic mixed cultures in elephant dung. Int.
J. Hydrogen Energy 36: 13928-13938.
Gunnarsson,
C.C. & Petersen, C.M. 2007. Water hyacinths as a resource in agriculture
and energy production: A literature review. Waste Manage. 27: 117-129.
Harmsen, P.,
Huijgen, W., Bermudez, L. & Bakker, R. 2010. Literature Review of
Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass. Food & Biobased Research, Wageningen UR. pp. 1-49.
Jianlong, W. & Wei, W. 2009. Factors
influencing fermentative hydrogen production: A review. Int. J. Hydrogen
Energy 34: 799-811.
Jung, Y.H., Cho, H.J., Lee, J.S., Noh, E.W., Park, O.K. & Kim,
K.H. 2013. Evaluation of a transgenic poplar as a
potential biomass crop for biofuel production. Bioresour Technol.
129: 639-641.
Kongjan, P.
& Angelidaki, I. 2010. Extreme thermophilic biohydrogen production from
wheat straw hydrolysate using mixed culture fermentation: Effect of reactor
configuration. Bioresour. Technol. 101: 7789-7796.
Kongjan, P., O-Thong, S., Kotay, M., Min, B. & Angelidaki, I.
2010. Biohydrogen production from wheat straw
hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol. Bioeng. 105: 899-908.
Kumar, A.,
Singh, L.K. & Ghosh, S. 2009. Bioconversion of
lignocellulosic fraction of water-hyacinth (Eichhornia crassipes)
hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Bioresour.
Technol. 100: 3293-3297.
Lin, C.Y.
& Lay, C.H. 2005. A nutrient formulation for fermentative
hydrogen production using anaerobic sewage sludge microflora. Int. J.
Hydrogen Energy 30: 285-292.
Lo, Y.C.,
Su, Y.C., Cheng, C.L. & Chang, J.S. 2011. Biohydrogen
production from pure and natural lignocellulosic feedstock with chemical pretreatment
and bacterial hydrolysis. Int. J. Hydrogen Energy 36:
13955-13963.
Long, C., Cui, J., Liu, Z., Liu, Y., Long, M. & Hu, Z. 2010. Statistical optimization of fermentative hydrogen production from
xylose by newly isplated Enterobacter sp. CN1. Int. J.
Hydrogen Energy 35: 6657-6664.
Mu, Y., Zheng, X.J. & Yu, H.Q. 2009. Determining
optimum conditions for hydrogen production from glucose by an anaerobic culture
using response surface methodology (RSM). Int. J. Hydrogen Energy 34:
7959-7963.
Nigam, J.N.
2002. Bioconversion of water-hyacinth (Eichhornia
crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by
xylose-fermenting yeast. J. Biotechnol. 97: 107- 116.
Nissila,
M.E., Lay, C.H. & Puhakka, J.A. 2014. Dark
fermentative hydrogen production from lignocellulosic hydrolyzates: A review. Biomass and Bioener. 67: 145-159.
Owen, W.,
Stuckey, C., Healy, J., Young, L. & McCarty, P. 1978. Bioassay
for monitoring biochemical methane potential and anaerobic toxicity. Water
Res. 13: 485-493.
Pattra,
S., Sangyoka, S., Boonmee, M. & Reungsang, A. 2008. Bio-hydrogen
production from the fermentation of sugarcane bagasse
hydrolysate by Clostridium butyricum. International
Journal of Hydrogen Energy 33(19): 5256-5265.
Pattra, S. & Sittijunda,
S. 2015. Optimization of factors affecting acid hydrolysis of
water hyacinth stem (Eichhornia Crassipes) for bio-hydrogen production. Energy Procedia 79:
833-837.
Polprasert,
C., Kongsricharoern, N. & Kanjanaprapin, W. 1994. Production of feed and
fertilizer from water hyacinth plants in the tropics. Waste Manage. Res.
12: 3-11.
Phowan, P. &
Danvirutai, P. 2014. Hydrogen production from cassava pulp hydrolysate by mixed
seed cultures: Effects of initial pH, substrate and biomass concentrations. Biomass and Bioener. 64: 1-10.
Reungsang,
A., Sittijunda, S. & Angelidaki, I. 2013. Simultaneous
production of hydrogen and ethanol from waste glycerol by Enterobacter
aerogenes KKU-S1. Int. J. Hydrogen Energy 38: 1813-1825.
Saha, S.K. & Brewer,
C.F. 1994. Determination of the concentrations of
oligosaccharides complex type carbohydrates and glycolproteins using the
phenol-sulfuric acid method. Carbohydr. Res. 254: 157-167.
Saraphirom, P. &
Reungsang, A. 2010. Optimization of biohydrogen production
from sweet sorghum syrup using statistical methods. Int. J. Hydrogen
Energy 35: 13435-13444.
Sittijunda,
S. & Reungsang, A. 2012. Biohydrogen production from
waste glycerol and sludge by anaerobic mixed cultures. Int. J.
Hydrogen Energy 37: 13789-13796.
Sivagurunathan,
P., Kumar, G., Bakonyic, P., Kim, S.H., Kobayashi, T., Xu, K.Q., Lakner, G.,
Toth, G., Nemestothy, N. & Bako, K.B. 2016. A
critical review on issues and overcoming strategies for the enhancement of dark
fermentative hydrogen production in continuous systems. Int. J.
Hydrogen Energy 41: 3820-3836.
Sreela-or,
C., Imai, T., Plangklang, P. & Reungsang, A. 2011. Optimization of key
factors affecting hydrogen production from food waste by anaerobic mixed
cultures. Int. J. Hydrogen Energy 36: 14120-14133.
Vazquez,
I.V., Rangel, M.P., Tapia, A., Buitrón, G., Molina, C., Hernández, G. &
Delgado, L.A. 2015. Hydrogen and butanol production from
native wheat straw by synthetic microbial consortia integrated by species of Enterococcus and Clostridium. Fuel 159: 214-222.
Xu,
J.F., Ren, N.Q., Wang, A.J., Qiu, J., Zhao, Q.L., Feng, Y.F. & Liu, B.F.
2010. Cell growth and hydrogen production on the mixture of xylose and glucose using
a novel strain of Clostridium sp. HR-1 isolated from cow dung compost. Int.
J. Hydrogen Energy 35: 13467-13474.
Zhao,
X., Cheng, K. & Liu, D. 2009. Organosolv pretreatment of
lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol.
Biotechnol. 82: 815-827.
Zhao, C., Wenjing, L.,
Hongtao, W. & Xiangliang, P. 2013. Simultaneous hydrogen and ethanol
production from a mixture of glucose and xylose using extreme thermophiles I:
Effect of substrate and pH. Int. J. Hydrogen Energy 38: 9701-9706.
*Pengarang untuk surat-menyurat; email: sakpattra@gmail.com
|