Sains Malaysiana 46(1)(2017): 67–74
http://dx.doi.org/10.17576/jsm-2017-4601-09
Determination of Optimum Combination of Voxel
Size and b-value for Brain Diffusion Tensor Imaging
(Penentuan Gabungan Optimum Saiz Voksel dan
Nilai-b untuk Pengimejan Tensor Difusi Otak)
NUR HARTINI MOHD TAIB1*, WAN AHMAD KAMIL WAN ABDULLAH1, IBRAHIM LUTFI SHUAIB2, ENRICO MAGOSSO2 & SUZANA MAT ISA2
1Department of Radiology,
School of Medical Sciences, Universiti Sains Malaysia
Kubang
Kerian, Kelantan Darul Naim, Malaysia
2Advanced Medical and
Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang
Malaysia
Diserahkan:
20 Mei 2014/Diterima: 8 April 2016
ABSTRACT
Optimum combination of voxel size resolution
and b-value for whole brain imaging has been determined. Data images
were acquired using a 1.5T magnetic resonance imaging (MRI)
system (GE Signa HDxt). Diffusion tensor imaging
(DTI)
scan was performed on phantom and a human volunteer. Six protocols
which consist of various combination
of voxel size and b-value were evaluated. Measurement of signal-to-noise
ratio (SNR)
and DTI parameter indices were carried out for both phantom
and in-vivo studies. Due consideration was given to a combination
of parameters yielding sufficient SNR with DTI values
comparable to those obtained from previous reported studies. For
the phantom study, SNR ≥ 20 was found in all of the protocols except for
a combination of voxel size of 2.0 × 2.0 × 2.0 mm3
with b-value of 1200 s/mm2 (V2.0
B1200) and that of voxel size of 2.0 × 2.0 × 2.0 mm3
with b-value of 1000 s/mm2 (V2.0 B1000). For in-vivo
study, all protocols presented SNR > 20. It was found that
a combination of voxel size of 2.5 × 2.5 × 2.5 mm3 with
b-value of 1000 s/mm2 (V2.5
B1000) and that of voxel size of 2.5 × 2.5 × 2.5 mm3
with b-value of 700 s/mm2 (V2.5
B700) displayed the most comparable ADC and FA values
with references. In terms of anatomic coverage, V2.5 B700 was found
better than V2.5 B1000 as it assures coverage of the whole brain.
In conclusion, a combination of voxel size of 2.5 × 2.5 ×
2.5 mm3 with
b-value of 700 s/mm2 was
considered as optimum parameters for brain DTI.
Keywords: Brain imaging; b-value;
diffusion tensor imaging; optimization; voxel size
ABSTRAK
Gabungan optimum
peleraian saiz voksel dan nilai-b untuk pengimejan seluruh otak
telah ditentukan. Data imej telah diperoleh menggunakan sistem pengimejan resonans
magnet (MRI) 1.5T (GE Signa HDxt).
Imbasan pengimejan tensor difusi (DTI)
telah dilakukan ke atas fantom dan seorang sukarelawan. Enam protokol yang terdiri daripada pelbagai gabungan saiz voksel
dan nilai-b telah dinilai. Pengukuran
nisbah isyarat-hingar (SNR) dan parameter indeks DTI
telah dilakukan untuk kajian fantom dan in-vivo.
Pertimbangan yang sewajarnya telah diberikan
kepada gabungan parameter yang menghasilkan SNR mencukupi dan nilai DTI
setara dengan yang diperoleh daripada kajian terdahulu.
Untuk kajian fantom, didapati SNR ≥ 20 bagi semua protokol kecuali gabungan saiz voksel
2.0 × 2.0 × 2.0 mm3 dengan
nilai-b 1200 s/mm2 (V2.0
B1200) dan gabungan saiz voksel 2.0 × 2.0 × 2.0 mm3 dengan
nilai-b 1000 s/mm2 (V2.0
B1000). Bagi kajian in-vivo,
semua protokol menunjukkan SNR
> 20. Didapati gabungan saiz voksel 2.5
× 2.5 × 2.5 mm3
dengan nilai-b 1000 s/mm2
(V2.5 B1000) dan saiz voksel 2.5 × 2.5 ×
2.5 mm3
dengan nilai-b 700 s/mm2 (V2.5 B700) telah mempamerkan
nilai ADC dan FA paling setara dengan rujukan.
Daripada segi liputan anatomi, didapati V2.5 B700 lebih baik daripada
V2.5 B1000 kerana ia menjamin liputan
seluruh otak. Kesimpulannya, gabungan saiz voxel 2.5 × 2.5
× 2.5 mm3
dengan nilai-b 700 s/mm2 dianggap
sebagai parameter yang optimum untuk DTI otak.
Kata
kunci: Nilai-b; pengimejan otak; pengimejan tensor difusi; pengoptimuman; saiz
voksel
RUJUKAN
Alexander, D.C. & Barker, G.J. 2005. Optimal
imaging parameters for fiber-orientation estimation in diffusion MRI. NeuroImage 27(2): 357-367.
Bastin, M.E., Armitage, P.A. & Marshall, I. 1998. A theoretical study of the effect of experimental noise on the
measurement of anisotropy in diffusion imaging. Magnetic Resonance Imaging 16(7): 773-785.
Bougias,
C. & Tripoliti, E.E. 2009. Theory of diffusion tensor
imaging and fiber tractography analysis. European Journal of
Radiography 1(1): 37-41.
Chanraud,
S., Zahr, N., Sullivan, E.V. & Pfefferbaum, A. 2010. MR diffusion tensor imaging: A window
into white matter integrity of the working brain. Neuropsychology Review 20(2):
209-225.
Ding,
X.Q., Finsterbusch, J., Wittkugel, O., Saager, C., Geobell, E., Fitting, T.,
Grzyska, U., Zeumer, H. & Fiehler, J. 2007. Apparent diffusion coefficient,
fractional anisotropy and T2 relaxation time measurement: Does the field
strength matter? Clinical Neuroradiology 17: 230-238.
Dietrich, O., Raya, J.G., Reeder, S.B., Reiser, M.F. &
Schoenberg, S.O. 2007. Measurement of signal-to-noise ratios in MR images:
Influence of multichannel coils, parallel imaging, and reconstruction filters. Journal
of Magnetic Resonance Imaging 26 (2): 375-385.
Hunsche, S., Moseley, M.E., Stoeter, P. & Hedehus, M.
2001. Diffusion-tensor MR imaging at 1.5 and 3.0 T: Initial observations. Radiology 221(2): 550-556.
Jones, D.K., Lythgoe, D., Horsfield, M.A., Simmons, A.,
Williams, S.C.R. & Markus, H.S. 1999. Characterization of
white matter damage in Ischemic leukoaraiosis with diffusion tensor MRI. Stroke 30(2): 393-397.
Jones,
D.K. 2004. The effect of gradient sampling schemes on measures derived from
diffusion tensor MRI: A Monte Carlo study. Magnetic Resonance in Medicine 51(4):
807-815.
Jones, D.K., Williams, S.C.R., Gasston, D., Horsfield, M.A.,
Sim, A. & Howard, R. 2002. Isotropic resolution
diffusion tensor imaging with whole brain acquisition in a clinically
acceptable time. Human Brain Mapping 15(4): 216-230.
Jones,
D.K. & Basser, P.J. 2004. Squashing peanuts and smashing pumpkins: How
noise distorts diffusion-weighted MR data. Magnetic Resonance in Medicine 52(5):
979-993.
King,
K.F. 2004. ASSET - parallel imaging on the GE scanner. In GE
Healthcare http://www.mr.ethz.ch/parallelmri04/ abstracts/pub/King.pdf. Accessed on 22 December 2011.
Laganà, M., Rovaris, M., Ceccarelli, A., Venturelli, C.,
Marini, S. & Baselli, G. 2010. DTI parameter optimisation for acquisition at
1.5T: SNR analysis and clinical application. Computational Intelligence and
Neuroscience 2010: 1-8.
Lazar,
M. & Alexander, A.L. 2003. An error analysis of white matter tractography
methods: Synthetic diffusion tensor field simulations. NeuroImage 20(2):
1140-1153.
Le
Bihan, D., Mangin, J-F., Poupon, C., Clark, C.A.,
Pappata, S., Molko, N. & Chabriat, H. 2001. Diffusion tensor imaging:
Concepts and applications. Journal of Magnetic Resonance Imaging 13(4):
534-546.
Löbel, U., Sedlacik, J., Güllmar, D., Kaiser, W.A.,
Reichenbach, J.R. & Mentzel, H.J. 2009. Diffusion tensor
imaging: The normal evolution of ADC, RA, FA, and eigenvalues studied in
multiple anatomical regions of the brain. Neuroradiology 51(4): 253-263.
Madden,
D.J., Bennett, I.J. & Song, A.W. 2009. Cerebral
white matter integrity and cognitive aging: Contributions from diffusion tensor
iamaging. Neuropsychology Review 19: 415-435.
McRobbie,
Donald W., Elizabeth A. Moore, Martin J. Graves, and Martin R. Prince. 2006.
Chapter 5 - What you set is what you get: basic image optimization. In MRI
from Picture to Proton, edited by McRobbie, D.W., Moore, E.A., G.M.J. &
Prince, M.R. Cambridge: Cambridge University Press.
Mohd
Taib, Nur Hartini, Wan Ahmad Kamil Wan Abdullah, Ibrahim Lutfi Shuaib, Enrico
Magosso, & Suzana Mat Isa. 2012. Diffusion tensor imaging
and tractography for the assessment of leukoaraiosis. Paper read at IEEE
EMBS Conference on Biomedical Engineering and Sciences (IECBES), 17-19
December 2012, at Langkawi, Malaysia.
Mori,
S. 2007. Chapter 6 - Practical aspects of diffusion tensor imaging. In Introduction to Diffusion Tensor Imaging. Amsterdam: Elsevier Science B.V.
Mukherjee, P., Chung, S.W., Berman, J.I., Hess, C.P. &
Henry, R.G. 2008a. Diffusion tensor MR imaging and fiber tractography: Technical considerations. AJNR
American Journal of Neuroradiology 29: 843-852.
Mukherjee, P., Berman, J.I., Chung, S.W., Hess, C.P. &
Henry, R.G. 2008b. Diffusion tensor MR imaging and fiber tractography: Theoretic underpinnings. AJNR
American Journal of Neuroradiology 29: 632-641.
Oouchi, H., Yamada, K., Sakai, K., Kizu, O., Kubota, T.,
Ito, H. & Nishimura, T. 2007. Diffusion anisotropy measurement of brain white
matter is affected by voxel size: Underestimation occurs in areas with crossing
fibers. AJNR American Journal of Neuroradiology 28(6): 1102-1106.
Reeder, S.B., Wintersperger, B.J., Dietrich, O., Lanz, T.,
Greiser, A., Reiser, M.F., Glazer, G.M. & Schoenberg, S.O. 2005. Practical approaches to
the evaluation of signal-to-noise ratio performance with parallel imaging:
Application with cardiac imaging and a 32-channel cardiac coil. Magnetic Resonance
in Medicine 54(3): 748-754.
Sasaki,
M. 2007. High-resolution, isotropic-voxel acquisition technique improves
quality and utility of diffusion-weighted and diffusion tensor imaging. GE
Healthcare Signa Pulse. pp. 20-23.
*Pengarang untuk surat-menyurat;
email: nhartini@usm.my
|