Sains Malaysiana 46(2)(2017): 223–229
http://dx.doi.org/10.17576/jsm-2017-4602-06
Physicochemical Characteristics of Non-Starch
Polysaccharides Extracted from
Cassava Tubers
(Ciri Fizikokimia Polisakarida tak Berkanji yang Diekstrak
daripada Ubi Kayu)
UTHUMPORN, U.1*,
NADIAH,
I.1,
IZZUDDIN,
I.1,
CHENG,
L.H.1
& AIDA, H.2
1Food Technology Division, School
of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Pulau
Pinang, Malaysia
2Food Technology Centre, MARDI Headquarters,
Serdang, G.P.O. Box 12301,
50774 Kuala Lumpur, Malaysia
Diserahkan: 23 Mei 2014/Diterima:
10 Mei 2016
ABSTRACT
This research mainly focused
on isolation of non-starch polysaccharide (NSP)
from different parts of cassava tuber by using water extraction
and to evaluate the effect of NSP addition into flour on nutritional composition, swelling
and solubility, pasting properties and dough characteristics by
farinograph and extensograph. Three
origins of (NSP) extracted were used: cassava peels,
coarse and fine portions from cassava flesh. The isolation of NSP
was done by using water extraction method and designated
as water-extractable (WEP)
and water un-extractable non starch polysaccharides (WUP).
The percentage yield of WEP (0.24 - 1.64%) from water extraction
was significantly lower as compared to WUP (2.58
- 4.33%). Upon the incorporation of 5% NSP, the cassava flour showed
lower moisture content compared to the sample without the addition
of NSP,
while fats and crude fiber content of cassava flours were found
to be increased upon the incorporation of 5% NSP from all origins. Swelling
power and solubility of cassava flour were being reduced upon the
incorporation of 5% of NSP from cassava peel and coarse portion of cassava flesh.
The changes in dough characteristics showed that water absorption
of the samples upon the addition of 5% NSP into wheat flour was found
to be higher compared to control wheat flour. In contrast, dough
stability and extensibility, tolerance index, resistance to extension,
as well as the work input necessary for dough deformation from wheat
flour with addition of 5% NSP
resulted lower than control wheat flour. Overall,
NSP extracted from cassava peels
and coarse portion of cassava flesh performed similar characteristics
and functional properties upon the incorporation into the flour.
Keywords: Cassava; non starch
polysaccharides; water extraction
ABSTRAK
Kajian ini tertumpu kepada
pengekstrakan polisakarida
tak berkanji (NSP)
daripada ubi kayu
dan menilai
kesannya ke atas
komposisi makanan,
kuasa pembengkakan dan keterlarutan, ciri kelikatan dan perubahan ciri
doh melalui
‘farinograf’ dan ‘ekstensograf’. Tiga jenis NSP yang diekstrak
telah digunakan:
kulit ubi kayu,
bahagian kasar
dan halus daripada
isi ubi kayu.
Pengasingan NSP telah dilakukan
dengan menggunakan
kaedah pengekstrakan air dan ditetapkan sebagai pengekstrakan air (WEP)
dan pengekstrakan
air polisakarida tak berkanji (WUP). Peratusan bagi hasil WEP (0.24-1.64%)
adalah lebih
rendah berbanding dengan WUP (2.58 - 4.33%). Kandungan air didapati lebih rendah apabila tepung ubi kayu
ditambahkan dengan
5% NSP
berbanding dengan sampel yang tidak ditambahkan NSP, manakala
kandungan lemak
dan serabut kasar
didapati meningkat
apabila ditambah dengan 5% NSP daripada
semua bahagian.
Kuasa pembengkakan dan keterlarutan tepung ubi kayu menunjukkan
penurunan dengan
penambahan 5% NSP daripada
kulit ubi kayu dan bahagian
kasar isi ubi kayu. Perubahan ke atas ciri
doh didapati
menunjukkan peningkatan kuasa penyerapan air apabila NSP ditambah
ke dalam tepung gandum berbanding
tepung gandum
kawalan. Namun, kestabilan doh,
indeks toleransi,
rintangan lanjutan serta perkara yang diperlukan untuk mengubah bentuk doh daripada tepung
gandum yang ditambah
dengan NSP telah memberi keputusan berkurangan berbanding tepung gandum kawalan.
Secara keseluruhan,
NSP
yang diekstrak daripada
kulit ubi kayu
serta bahagian
kasar daripada isi ubi kayu
menunjukkan sifat
yang hampir sama
apabila ditambahkan
ke dalam tepung.
Kata kunci: Pengekstrakan
air; polisakarida tak
berkanji; ubi kayu
RUJUKAN
Adetan, D.A., Adekoya, L.O. & Aluko, O.B.
2003.
Characterization of some properties of cassava root tubers. Journal
of Food Engineering 59: 349-353.
AOAC. 1996. Official Method of Analysis
of the Association of Official Analytical Chemists. 14th ed.
Arlington, Virginia: AOAC International.
Aryee, F.N.A., Oduro, I., Ellis, W.O. & Afuakwa,
J.J. 2006.
The physicochemical properties of flour samples from the roots of
31 varieties of cassava. Food Control 17: 916-922.
Charles, A.L.,
Huang, T.C., Lai, P.Y., Chen, C.C., Lee, P.P. & Chang, Y.H.
2007. Study of wheat
flour-cassava starch composite mix and the function of cassava mucilage
in Chinese noodles. Food Hydrocolloids 21: 368-378.
Charoenkul, N., Uttapap, D., Pathipanawat, W. &
Takeda, Y. 2011.
Physicochemical characteristics of starches and
flours from cassava varieties having different cooked root textures.
Food Science and Technology 44: 1774-1781.
Delcour, J.A., Martens, A., Schellekens, M., De Geest, C. &
Defloor, I. 1991. Emulsifiers
and/ or extruded starch in the production of breads from cassava.
Cereal Chem. 64: 323-327.
Gomand, S.V., Lamberts,
L., Visser, R.G.F. & Delcour, J.A. 2010. Physicochemical properties of potato
and cassava starches and their mutants in relation to their structural
properties. Food Hydrocolloids 24: 424-433.
Mohan, B.H., Malleshi, N.G. & Koseki, T.
2010.
Physico-chemical
characteristics and non-starch polysaccharide contents of Indica
and Japonica brown rice and their malts. Food
Science and Technology 43: 784-791.
Nindjin, C., Amani, G.N.
& Sindic, M. 2011. Effect of blend levels on composite
wheat doughs performance made from yam and cassava native starches
and bread quality. Carbohydrate Polymers 86: 1637-1645.
Rosell, C.M., Rojas,
J.A. & Benedito de Barber, C. 2001. Influence of hydrocolloids on dough
rheology and bread quality. Food Hydrocolloids 15: 75-81.
Sasaki, T., Kohyama, K. & Yasui, T. 2004. Effect of water-soluble and insoluble
non-starch polysaccharides isolated from wheat flour on the rheological
properties of wheat starch gel. Carbohydrate Polymers 57:
451-458.
Sasaki, T., Yasui, T. & Matsuki, J. 2000. Influence of non-starch polysaccharides
isolated from wheat flour on the gelatinization and gelation of
wheat starches. Food Hydrocolloids 14:
295- 303.
Schoch, T.J. 1964. Swelling
power and solubility of granular starches. In
Methods in Carbohydrate Chemistry, Vol. 4. edited
by Whistler, R.L., Smith, R.J. & BeMiller,
J.N. New York: Academic Press. pp. 106-108.
Shyama, P.R., Manohar,
R.S. & Muralikrishna, G. 2004. Functional properties of water-soluble
non-starch polysaccharides from rice and ragi:
Effect on dough characteristics and baking quality. LWT 40:
1678-1686.
Sinha, A.K., Kumar, V., Makkar, H.P.S., Boeck, G.D. &
Becker, K. 2011. Non starch polysaccharides and
their role in fish nutrition- A review. Food Chemistry
127: 1409-1426.
Suba Rao, M.V.S.S.T.,
Sai Manohar, R. & Muralikrishna, G.
2004.
Functional characteristics of non-starch polysaccharides (NSP) obtained
from native (n) and malted (m) finger millet. Food Chemistry
88: 453-460.
Sun, R.C., Jones,
G.L., Tomkinson, J. & Bolton, J. 1999. Fractional isolation and partial
characterization of non-starch polysaccharides and lignin from sago
pith. Industrial Crops and Products 19: 211-220.
Swinkels, J.J.M. 1985. Composition
and properties of commercial native starches. Starch/
Stäeke 37: 1-5.
Tester, R.F. &
Morrison, W.R. 1990.
Swelling and gelatinization of cereal starches 1. Effects
of amylopectin, amylose, and lipids. Cereal Chemistry
67: 551-557.
Tester, R.F. &
Sommerville, M.D. 2003. The effects on
non starch polysaccharides on the extent
of gelatinization, swelling and α-amylase hydrolysis of maize
and wheat starches. Food Hydrocolloids 17: 41-54.
Zaidul, I.S.M., Nik Norulaini,
N.A., Mohd. Omar, A.K., Yamauchi, H. & Noda,
T. 2007. RVA analysis of mixtures of wheat
flour and potato, sweet potato, yam, and cassava starches.
Carbohydrate Polymers 69: 784-791.
*Pengarang
untuk surat-menyurat;
email: sapina@usm.my
|