Sains Malaysiana 46(2)(2017): 309–315
http://dx.doi.org/10.17576/jsm-2017-4602-16
Dominant Influence of the Terminal
Molecule of PNIPA Chain on Wettability
(Pengaruh Dominan Molekul Terminal Raintaian
PNIPA ke atas Kebolehbasahan)
NURUL HUDA1*,
MOHD.
RASHID2
& NAHIDA SULTANA1
1Center for Advanced Research in
Sciences, University of Dhaka, Dhaka 1000, Bangladesh
2Malaysia-Japan International Institute
of Technology, 54100 UTM Kuala Lumpur,
Federal Territory, Malaysia
Diserahkan: 6 April 2016/Diterima:
8 Jun 2016
ABSTRACT
Poly(N-isopropylacrylamide)
(PNIPA)
brushes on silicon substrate was constructed and molecular weight
and polydispersity index was controlled precisely. Molecular behavior
of the PNIPA
grafted surface was observed by using captive bubble
contact angle method. A very interesting phenomenon of high density
PNIPA grafted
membrane with a chloride terminal molecule was observed. The contact
angle of high density PNIPA-Cl increased sharply while the temperature rises above
32oC. But in the case of PNIPA gel
surface the contact angle result decreases sharply while the temperature
reaches above lower critical solution temperature (LCST).
In order to identify the reason behind this abnormal behavior
of PNIPA-Cl
grafted membrane, the terminal chloride molecule of PNIPA chain
was modified to less electronegative azide (-N3) as
well as carboxylic acid (-COOH). Finally it was found that terminal
molecule of high density PNIPA grafted membrane has a great influences on the wettability
change of PNIPA membrane in water by changing the
temperature.
Keywords: ATRP;
grafted membrane; monomer; PNIPA
ABSTRAK
Berus poli(N-isopropilakrilamida)
(PNIPA) pada substrat silikon telah
dibina dan berat molekul serta indeks kepoliserakan telah dikawal
dengan tepat. Tingkah laku molekul permukaan cantuman PNIPA telah
diperhatikan dengan menggunakan kaedah sudut sentuhan tangkapan
gelembung. Suatu fenomena yang sangat menarik untuk membran cantuman
PNIPA ketumpatan
tinggi dengan klorida terminal molekul diperhatikan. Sudut sentuh
PNIPA-Cl
ketumpatan tinggi meningkat dengan ketara manakala suhu meningkat
melebihi 32oC.
Tetapi dalam kes gel permukaan PNIPA, keputusan sudut sentuh
berkurangan secara mendadak semasa suhu mencapai tahap di atas
suhu kritikal larutan (LCST). Untuk mengenal pasti sebab di sebalik tingkah laku
tidak normal daripada PNIPA-Cl membran cantuman ini, molekul
klorida terminal rantaian PNIPA diubah suai untuk mengurangkan
azida elektronegatif (-N3) serta asid karbosilik (-COOH). Kesimpulannya,
didapati bahawa molekul terminal ketumpatan tinggi PNIPA
membran cantuman mempunyai pengaruh yang besar pada
perubahan kebolehbasahan membran PNIPA dalam air dengan mengubah suhunya.
Kata kunci: ATRP; grafted membran;
monomer; PNIPA
RUJUKAN
Abraham,
M. 2004. Adhesion and wetting in an aqueous environment: Theoretical
assessment of sensivity to the solid surface energy. Langmuir
20: 1317-1320.
Atsushi,
S. & Yasuhiro, K. 1999. Static contact angle of sessile air
bubble on polymer gel surface in water. Jpn. J. Appl. Phys.
38: 2910-2916.
Cassie,
A.B.D. & Baxter, S. 1944. Wettability of porus surface. Trans
Faraday Soc. 40: 546-551.
Chen, G. & Hoffman,
A.S. 1995. Graft copolymers that exhibit temperature-induced phase
transitions over a wide range of pH. Nature (London) 373:
49-52.
Grundke, K., Pöschel, K., Synytska,
A., Frenzel, R., Drechsler, A., Nitschke, M., Cordeiro, A.L.,
Uhlmann, P. & Welzel, P.B. 2015. Experimental studies of contact
angle hysteresis phenomena on polymer surfaces - toward the understanding
and control of wettability for different applications. Advances
in Colloid and Interface Science 222: 350-376. DOI: doi: 10.1016/j.cis.2014.10.012.
Hiromasa, S., Huda, M.N., Hisashi,
H., Kazushige, K.,Takahiro, S. & Yukikazu, T. 2010. Precise
synthesis and physicochemical properties of high-density polymer
brushes designed with poly(N-isopropylacrylamide). Macromolecules
43: 9945- 9956.
Huda, M. & Kabir, A. 2013. Stimuli
responsive morphological changes of Pnipa polymer brushes synthesized
on silicon substrate. Journal of Molecular and Engineering
Materials 2: 1-9.
Irem, E., Helmut, S. & Levent,
D.A. 2011. Effect of structural isomerism and polymer end group
on the pH-stability of hydrogen-bonded multilayers. Journal
of Colloid and Interface Science 361(2): 477-482.
Jin, L., Yin, Z. & Zheng, L.
2014. Thermo-responsive brush copolymers with structure-tunable
LCST and switchable surface wettability. Polymer 55: 6552-6560.
Kari, J.M. & Yoram, C. 2014.
Wettability of terminally anchored polymer brush layers on a polyamide
surface. Colloid and Interface Science 436: 286-295.
Lamson, M., Maciej, K., Hangjun,
D., Mingjiang, Z. & Matyjaszewski, K. 2016. Synthesis of well-defined
polyacrylonitrile by ICAR ATRP with low concentrations of catalyst.
Polymer Chem. 54(13): 1961-1968. DOI: 10.1002/ pola.28055.
Manias, E., Rackaiti, M., Foley,
T., Efimenko, K. & Genzer, J. 2005. Combinatorial polymer
brushes formed by temperature responsive polymers with tunable
onset of response. Polymer Preprints 46(2): 11-12.
Pawel, K., Thomas, G.R., Matyjaszewski,
K. & Armando, G. 2016. Relation between overall rate of ATRP
and rates of activation of dormant species. Macromolecules
49(7): 2467- 2476. DOI: 10.1021/acs.macromol.6b00058.
Okano, T. 1993. Molecular design
of temperature-responsive polymers as intelligent materials. Adv.
Polym. Sci. 110: 179-197.
Prokhorova, S.A., Kopytsev, A.,
Ramakrishnan, H.Z. & Rühe, J. 2003. Can polymer brushes induce
motion of nano-objects? Nanotechnology 14: 1098-1103.
Shah, R.R., Merreceyes, D., Husemann,
M., Rees, I., Abbott, N.L., Hawker, C.J. & Hedrick, J.L. 2000.
Using atom transfer radical polymerization to amplify monolayers
of initiators patterned by micro contact printing into polymer
brushes for pattern transfer. Macromolecules 33: 597-605.
Yamamoto, S., Ejaz, M., Tsujii,
Y. & Fukuda, T. 2000. Surface interaction forces of well-
defined, high-density polymer brushes studied by atomic force
microscopy. 2. Effect of graft density. Macromolecules 33(15):
5608-5612.
Wenzel, R.N. 1936. Resistance of
solid surfaces to wetting by water. Ind. Eng. Chem. 28:
988-994.
*Pengarang untuk surat-menyurat;
email: write2shakil@gmail.com