Sains Malaysiana 46(3)(2017): 477–483

http://dx.doi.org/10.17576/jsm-2017-4603-16

 

Effect of Mixing Process Parameters and Suitability of Backbone Polymer for Aluminum Powder Injection Molding Feedstock

(Kesan Parameter Proses Percampuran dan Kesesuaian Polimer Tulang Belakang bagi Bahan Mentah Membentuk Suntikan Serbuk Aluminium)

 

A.A. ABDULLAHI , I.A. CHOUDHURY*, M. AZUDDIN & N. NAHAR

 

Manufacturing Systems Integration, Department of Mechanical Engineering, University of Malaya

50603 Kuala Lumpur, Federal Territory, Malaysia

 

Diserahkan:  22 Mei 2016/Diterima: 17 Ogos 2016

 

ABSTRACT

A suitable and cost-effective microfabrication technique for processing aluminum micropart is required, as the choice of aluminum microparts for aerospace, electronics and automobile components is preferred over other metals due to its excellent properties. Meanwhile, powder injection molding (PIM) is identified as an economical manufacturing technique for processing ceramic and micro-metal powders into microparts and or components. Therefore, this study investigates formulation and processing of aluminum PIM feedstock using a custom-made machine. The investigation is focused on the effect of mixing process parameters (powder loading, rotor speed and mixing temperature) and the suitability of the backbone polymer. The formulated PIM feedstock constituents are paraffin wax (PW), stearic acid (SA), high-density polyethylene (HDPE)/ medium-density polyethylene (MDPE) alternatively and aluminum micro-metal powder. Taguchi method is used for the design of experiments (DOEs) and analysis. In addition, response surface methodology (RSM) is employed to develop empirical viscosity models. The optimum powder-binder mixing ratio of 58:42 vol. % with rotor speed of 43 rpm were determined for preparing aluminum PIM feedstock using mini-lab mixer developed. The empirical model developed for aluminum PIM feedstock viscosity shows a good fit with R2 values of 0.84 using HDPE and 0.96 for MDPE binder system. This investigation demonstrates preparation and suitability of aluminum PIM feedstock using wax-based binder system.

 

Keywords: Aluminum; injection molding; optimization; powder-binder mixing; viscosity

 

ABSTRAK

Teknik mikrofabrikasi yang sesuai dan kos efektif dalam memproses komponen mikrobahagian aluminum amat diperlukan kerana ciri yang dimiliki adalah sangat bagus dan aluminum adalah pilihan yang lebih baik berbanding logam lain dalam pembuatan komponen pada skala mikro dalam bidang aeroangkasa, elektronik dan juga automotif. Sementara itu, sistem pengacuan logam teknik suntikan serbuk (PIM) dikenal pasti sebagai teknik pembuatan yang cekap daripada segi ekonomi untuk memproses serbuk seramik dan logam kepada komponen berskala mikro. Oleh itu, penyelidikan ini mengkaji formula dan teknik pemprosesan bahan mentah aluminum PIM menggunakan mesin khas buatan sendiri. Kajian ini memberi tumpuan kepada kesan campuran pelbagai proses parameter (bebanan serbuk, kelajuan rotor dan suhu campuran) serta kesesuaian penggunaan tulang belakang polimer. Formula untuk bahan mentah PIM yang digubal adalah lilin parafin (PW), asid stearik (SA), polietilena berketumpatan tinggi (HDPE)/polietilena berketumpatan sederhana (MDPE) sebagai alternatif dan serbuk logam aluminium berskala mikro. Kaedah Taguchi digunakan untuk mereka bentuk eksperimen (DOE) dan analisis. Di samping itu, kaedah gerak balas permukaan (RSM) diguna untuk membangunkan model empirikal kelikatan. Nisbah pencampuran serbuk pengikat yang optimum ialah 58:42 vol. % dengan kelajuan rotor 43 rpm ditentukan untuk menyediakan bahan mentah aluminum PIM menggunakan pengisar skala kecil. Model empirikal bagi kelikatan bahan mentah aluminum PIM menunjukan padanan yang baik dengan nilai R2 iaitu 0.84 untuk bahan HDPE dan 0.96 untuk MPDE sebagai sistem pengikat. Penyelidikan ini menunjukkan cara penyediaan dan kesesuaian bahan mentah aluminum PIM menggunakan sistem pengikat berasaskan lilin.

 

Kata kunci: Aluminum; campuran serbuk pengikat; kelikatan; pengacuan suntikan; pengoptimuman

RUJUKAN

Abdoos, H., Khorsand, H. & Yousefi, A.A. 2014. Torque rheometry and rheological analysis of powder-polymer mixture for aluminum powder injection molding. Iranian Polymer Journal 23(10): 745-755.

Ahmad, F. 2005. Rheology of metal composite mixes for powder injection molding. International Journal of Powder Metallurgy 41(6): 43-48.

Akhlaghi, F. & Zare-Bidaki, A. 2009. Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024-graphite composites produced by in situ powder metallurgy method. Wear 266(1-2): 37-45.

Arifin, A., Sulong, A.B., Muhamad, N., Syarif, J. & Ramli, M.I. 2015. Powder injection molding of HA/Ti6Al4V composite using palm stearin as based binder for implant material. Materials & Design 65: 1028-1034.

Chua, M.I.H., Sulong, A.B., Abdullah, M.F. & Muhamad, N. 2013. Optimization of injection molding and solvent debinding parameters of stainless steel powder (ss316l) based feedstock for metal injection molding. Sains Malaysiana 42(12): 1743-1750.

Jang, J.M., Lee, H., Lee, W., Kim, Y.I., Ko, S.H., Kim, J.H., Lee, J.S. & Choi, J.P. 2014. Evaluation of feedstock for powder injection molding. Japanese Journal of Applied Physics 53: 5S3.

Johnson, J.L. & Tan, L.K. 2004. Metal injection molding of heat sinks. Electronics Cooling 10(4).

Kok, M. 2005. Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. Journal of Materials Processing Technology 161(3): 381-387.

Liu, Z.Y., Kent, D. & Schaffer, G.B. 2009. Powder injection moulding of an Al-AlN metal matrix composite. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 513(14): 352-356.

Liu, Z.Y., Sercombe, T.B. & Schaffer, G.B. 2008. Metal injection moulding of aluminium alloy 6061 with tin. Powder Metallurgy 51(1): 78-83.

Montgomery, D.C. & Runger, G.C. 2014. Applied Statistics and Probability for Engineers (6th ed.). New York: John Wiley & Sons, Inc.

Myers, R.H., Montgomery, D.C. & Anderson-Cook, C.M. 2016. Response Surface Methodology: Process and Product Optimization using Designed Experiments. New York: John Wiley & Sons.

Ning, W.Y., Muhamad, N., Sulong, A.B., Fayyaz, A. & Raza, M.R. 2015. Effects of vanadium carbide on sintered WC- 10% Co produced by micro-powder injection molding. Sains Malaysiana 44(8): 1175-1181.

Rahimian, M., Ehsani, N., Parvin, N. & Baharvandi, H.R. 2009. The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. Journal of Materials Processing Technology 209(14): 5387-5393.

Raza, M.R., Sulong, A.B., Muhamad, N., Akhtar, M.N. & Rajabi, J. 2015. Effects of binder system and processing parameters on formability of porous Ti/HA composite through powder injection molding. Materials & Design 87: 386-392.

Tatar, C. & Özdemir, N. 2010. Investigation of thermal conductivity and microstructure of the α-Al2O3 particulate reinforced aluminum composites (Al/Al2O3-MMC) by powder metallurgy method. Physica B: Condensed Matter 405(3): 896-899.

Zakaria, H., Muhamad, N., Sulong, A.B., Ibrahim, M.H.I. & Foudzi, F. 2014. Moldability characteristics of 3 mol% Yttria stabilized zirconia feedstock for micro-powder injection molding process. Sains Malaysiana 43(1): 129-136.

 

 

*Pengarang untuk surat-menyurat; email: imtiaz@um.edu.my

 

 

sebelumnya