Sains Malaysiana 46(4)(2017): 529–535

http://dx.doi.org/10.17576/jsm-2017-4604-03

 

Soil Erosion Assessment in Tasik Chini Catchment using Remote Sensing and GIS Techniques

(Penilaian Hakisan Tanih di LembanganTasik Chini menggunakan Teknik Pengesanan Jarak Jauh dan GIS)

 

MUHAMMAD RENDANA*, SAHIBIN ABDUL RAHIM, WAN MOHD RAZI IDRIS,

TUKIMAT LIHAN & ZULFAHMI ALI RAHMAN

 

School of Environmental & Natural Resource Sciences, Faculty of Science and Technology

Universiti Kebangsaan Malaysian, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 27 Februari 2016/Diterima: 8 September 2016

 

ABSTRACT

Over many years, forested land transformation into urban, agriculture and mining areas within Tasik Chini Catchment become more intense. These activities have negatively affected the catchment through soil erosion and increased the amount of sediments that deposited into the lake. Hence, the present study aimed to estimate soil erosion risk within Tasik Chini Catchment integrating the Revised Universal Soil Loss Equation (RUSLE) model and remotely sensed geospatial data. The multispectral imagery from LANDSAT 8 was used to provide up to date information on land cover within the catchment. The result shows the majority of Tasik Chini Catchment is classified at very low class (< 10 ton ha−1 yr−1) about 4835.34 ha (92.38%), followed by the low class (10-50 ton ha−1 yr−1) with total area of 175.47 ha (3.35%), moderate high class (50-100 ton ha−1 yr−1) with total area of 65.11 ha (1.24%), high class (100-150 ton ha−1 yr−1) with total area of 38.37 ha (0.73%) and very high class (> 150 ton ha−1 yr−1) with total area of 120.04 ha (2.30%). Tasik Chini Catchment is very susceptible to soil erosion especially on northwest and southeast regions, where the main sources of soil loss come from the agricultural, new settlements and mining activities. To conclude, the estimation of soil erosion model using remotely sensed data can be used to build sustainable development strategy within Tasik Chini Catchment in the future.

 

Keywords: LANDSAT 8; NDVI; RUSLE; soil loss; Tasik Chini Catchment

 

ABSTRAK

Dalam tempoh masa yang lama, transformasi kawasan hutan di Lembangan Tasik Chini kepada kawasan-kawasan bandar, pertanian dan lombong menjadi lebih giat. Aktiviti-aktiviti ini telah memberi kesan kepada kawasan lembangan tersebut melalui hakisan tanih dan meningkatkan jumlah sedimen yang masuk ke dalam tasik. Oleh itu, kajian ini bertujuan untuk meramalkan risiko hakisan tanih di kawasan Lembangan Tasik Chini menggunakan penggabungan model Revised Universal Soil Loss Equation (RUSLE) dan data georeruang penginderaan jauh. Imej multispektral daripada LANDSAT 8 digunakan untuk memperoleh maklumat terkini mengenai litupan tanah dalam lembangan. Hasil menunjukkan bahawa kebanyakan kawasan di Lembangan Tasik Chini dikelaskan kepada sangat rendah (< 10 ton ha−1 yr−1) sekitar 4835.34 ha (92.38%), diikuti oleh rendah (10-50 ton ha−1 yr−1) sekitar 175.47 ha (3.35%), sederhana tinggi (50-100 ton ha−1 yr−1) sekitar 65.11 ha (1.24%), tinggi (100-150 ton ha−1 yr−1) sekitar 38.37 ha (0.73%) dan kelas sangat tinggi (> 150 ton ha−1 yr−1) sekitar 120.04 ha (2.30%). Lembangan Tasik Chini sangat kritikal kepada hakisan tanih terutama di kawasan-kawasan barat laut dan tenggara, dengan punca utama kehilangan tanih tersebut berasal daripada aktiviti-aktiviti pertanian, perbandaran dan perlombongan. Kesimpulannya, peramalan model hakisan tanih menggunakan data penginderaan jauh dapat digunakan bagi membina strategi pembangunan yang mampan di Lembangan Tasik Chini pada masa hadapan.

 

Kata kunci: Kehilangan tanih; LANDSAT 8; lembangan Tasik Chini; NDVI; RUSLE

RUJUKAN

Abdulla, H.H. 1966. A study of development of Podzol profiles in Dovey Forest. Ph.D. Thesis, University of Wales, Aberystwyth (Unpublished).

Ahmet, K. 2010. Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece catchment. Ozean Journal of Applied Sciences 3: 77-85.

Avery, B.W. & Bascomb, C.L. 1982. Soil survey laboratory methods. Harpenden: Soil survey technical monograph No. 6.

Barzani, M.G., Sahibin, A.R., Ekhwan, M.T., Idris, W.M.R., Tukimat, L., Zulfahmi, A.R., Azman, H. & Norhadilla, H. 2013. Flux of nutrients and heavy metals from the Melai River sub-catchment into Lake Chini, Pekan, Pahang, Malaysia. Environmental Earth Sciences 68: 889-897.

Bhattarai, R. & Dutta, D. 2007. Estimation of soil erosion and sediments yield using GIS at catchment scale. Water Resources Management 21: 1635-1647.

Colombo, S., Hanley, N. & Calatrava, J. 2005. Designing policy for reducing the off-farm effect of soil erosion using choice experiments. Journal of Agricultural Economics 56: 81-95.

Deng, J.S., Wang, K., Deng, Y.H. & Qi, G.J. 2008. PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. International Journal of Remote Sensing 29: 4823-4838.

Efe, R., Ekinci, D. & Curebel, I. 2008. Erosion analysis of Fındıklı Creek catchment (NW of Turkey) using GIS based on RUSLE (3d) method. Fresenius Environmental Bulletin 17: 586-576.

Jensen, J.R. 2005. Introductory Digital Image Processing: A Remote Sensing Perspective. New Jersey: Pearson Prentice Hall.

Jose, C.S. & Das, D.C. 1982. Geomorphic prediction models for sediments production rate and intensive priorities of catchments in Mayurakshi catchment. Proceedings of the International Symposium on Hydrological Aspects of Mountainous Catchment, University of Roorkee.

Karaburun, A. 2009. Estimating potential erosion risks in Corlu using the GIS-based RUSLE Method. Fresenius Environmental Bulletin 18: 1692-1700.

Kirkby, M.J. 1980. Soil Erosion: Soil Loss Estimation. New York: John Wiley & Sons.

Kothyari, U.C. & Jain, S.K. 1997. Sediment yield estimation using GIS. Hydrological Science Journal 42: 833-843.

Lee, G.S. & Lee, H.S. 2006. Scaling effect for estimating soil loss in the RUSLE model using remotely sensed geospatial data in Korea. Hydrologycal Earth System Sciences Discussion 3: 135-157.

Lin, C.Y., Lin, W.T. & Chou, W.C. 2002. Soil erosion prediction and sediment yield estimation: the Taiwan experience. Soil and Tillage Research 68: 143-152.

Ministry of Natural Resources and Environment Malaysia. 2010. Preparation of Design Guides For Erosion and Sediment Control in Malaysia. Kuala Lumpur: Department of Irrigation and Drainage Malaysia.

Morgan, R.P.C. 2005. Soil Erosion and Conservation. 3rd ed. Australia: Blackwell Publishing Company.

Parveen, R. & Kumar, U. 2012. Integrated approach of universal soil loss equation (USLE) and geographical information system (GIS) for soil loss risk assessment in upper South Koel Basin, Jharkhand. Journal of Geographic Information System 4: 588-596.

Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K. & Yoder, D.C. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Washington: US Department of Agriculture.

Roose, E.J. 1977. Application of the universal soil loss equation of Wischmeier and Smith in West Africa. In Soil Conservation and Management in the Humid Tropics, edited by Greenland, D.J. & Lal, R. London: John Wiley & Sons.

Sujaul, I.M., Muhd Barzani, G., Ismail, B.S., Sahibin, A.R. & Mohd Ekhwan, T. 2012. Estimation of the rate of soil erosion in the Tasik Chini Catchment, Malaysia using the RUSLE Model integrated with the GIS. Australian Journal of Basic and Applied Sciences 6: 286-296.

Serra, P., Pons, X. & Sauri, D. 2008. Land-cover and land-use change in a Mediterranean landscape: A spatial analysis of driving forces integrating biophysical and human factors. Applied Geography 28: 189-209.

Tew, K. 1999. Production of Malaysian Soil Erodibility Nomograph in Relation to Soil Erosion Issues. VT Soil Erosion Research and Consultancy.

van der Knijff, J.M., Jones, R.J.A. & Montanarella, L. 2000. Soil Erosion Risk Assessment in Europe. Office for Official Publications of the European Communities.

van Leeuwen, W.J.D. & Sammons, G. 2004. Vegetation dynamics and soil erosion modeling using remotely sensed data (MODIS) and GIS. 10th Biennial USDA Forest Service Remote Sensing Applications Conference, Salt Lake City, US Department of Agriculture Forest Service Remote Sensing Applications Center.

Wang, G., Wente, S., Gertner, G.Z. & Anderson, A. 2002. Improvement in mapping vegetation cover factor for the universal soil loss equation by geostatistical methods with Landsat Thematic Mapper images. International Journal of Remote Sensing 23: 3649-3667.

Wetlands International Asia Pacific. 1998. The Ecological Assessment of Chini Lake, Pahang, Peninsular Malaysia: An Evaluation of Its Conservation Value and Environmental Improvement Requirements. Kuala Lumpur: WIAP.

Williams, J.R. 1975. Sediments routing for agricultural catchments. Water Resources Bulletin 11: 965-974.

Wischmeier, W.H. 1975. Estimating the soil loss equation’s cover and management factor for undisturbed areas, in present and prospective technology for predicting sediment yields and sources. Proceedings Sediment-Yields Workshop, U.S. Department.

Wischmeier, W.H. & Smith, D.D. 1965. Predicting rainfall-erosion losses from cropland east of Rocky Mountains: Guide for selection of practices for soil and water conservation. Agricultural handbook 282. United States: US Department of Agriculture.

Yuan, F. 2008. Land-cover change and environmental impact analysis in the Greater Mankato area of Minnesota using remote sensing and GIS modeling. International Journal of Remote Sensing 29: 1169-1184.

 

 

*Pengarang untuk surat-menyurat; email: mrendana02@gmail.com

 

 

 

sebelumnya