Sains Malaysiana 46(5)(2017): 677–684
http://dx.doi.org/10.17576/jsm-2017-4605-01
Uniaxial
Compressive Strength of Antarctic Peninsula Rocks: Schmidt Hammer
Rebound
Test
(Kekuatan
Mampatan Sepaksi Batuan Semenanjung Antartika: Ujian Pantulan Tukul
Schmidt)
GOH THIAN
LAI1*,
NUR
AMANINA
MAZLAN1,
MOHD
SHAHRUL
MOHD
NADZIR1,
ABDUL
GHANI
RAFEK2,
AILIE
SOFYIANA
SERASA3,
AZIMAH
HUSSIN1,
LEE
KHAI
ERN4
&
FOONG
SWEE
YEOK5
1School of Environmental
and Natural Resource Sciences, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Department of Geosciences,
Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh,
Perak Darul Ridzuan, Malaysia
3Chemical and Petroleum
Engineering Department, Faculty of Engineering, Technology
and
Built Environment, UCSI University, 56000 Cheras, Kuala Lumpur,
Federal Territory
Malaysia
4Institute for Environment
and Development (LESTARI), Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
5School
of Biological Science, Universiti Sains Malaysia, Minden, 11800
Penang, Pulau Pinang
Malaysia
Diserahkan:
27 Mei 2016/Diterima: 18 Oktober 2016
ABSTRACT
The uniaxial compressive strength test is a destructive and time
consuming test. A number of non-destructive methods using portable
testing equipment are more applicable and easier to conduct. This
paper presents the results of a systematic approach to determine
the uniaxial compressive strength of rock material using the Schmidt
hammer rebound test. A total of five distinct locations (Graham
Coast, Davis Coast, Nanson Island, Danco Coast and Trinity Island)
were tested using the Schmidt rebound hammer test. Peninsula Antarctic
located at northwest of Antarctic region comprising of igneous and
metamorphic rocks. Statistical analysis of the results at 95% confidence
level showed the Schmidt rebound value of the Graham Coast ranges
from 40±1.7 to 41±1.3 with standard deviation of 8.2 to 6.4. The
rebound value for Davis Coast was 39±1.6 with standard deviation
of 7.7. Rocks from Nanson Island and Danco Coast have the Schmidt
rebound value of 54±1.7 with standard deviation of 8.0 and 36±1.3
with standard deviation of 6.2, respectively. The Schmidt rebound
value of rocks at Trinity Island ranges from 29±1.4 to 32±1.7 with
standard deviation of 6.8 to 8.1. Thus, the respective uniaxial
compressive strengths of rock materials from Graham Coast, Davis
Coast, Danco Coast, Nanson Island and Trinity Island were 73-108,
50, 59, 164 and 45-59 MPa. The respective ISRM
strength classification of rock materials of Graham
Coast, Davis Coast, Danco Coast, Nanson Island and Trinity Island
were strong (R4) to very strong rock (R5), medium strong rock (R3),
strong rock (R4), very strong rock (R5) and medium strong (R3) to
strong rock (R4). The results showed a mean of quantification of
rock material strength based on the Schmidt Hammer rebound test
in Antarctic Peninsula.
Keywords: Rock material; Schmidt hammer rebound value; uniaxial compressive
strength
ABSTRAK
Ujian kekuatan mampatan sepaksi adalah ujian memusnah dan memakan
masa. Beberapa kaedah tidak-musnah yang menggunakan peralatan ujian
mudah alih adalah lebih diterima pakai dan mudah untuk dijalankan.
Kertas ini membentangkan keputusan menggunakan pendekatan yang sistematik
untuk menentukan kekuatan mampatan sepaksi bahan batu dengan menggunakan
ujian pantulan tukul Schmidt. Sebanyak lima lokasi (Pantai Graham,
Pantai Davis, Pulau Nanson, Pantai Danco dan Pulau Trinity) telah
diuji menggunakan ujian pantulan tukul Schmidt. Semenanjung Antartik
yang terletak di barat laut Wilayah Antartik terdiri daripada batuan
igneus dan metamorfik. Keputusan analisis statistik pada tahap keyakinan
95% menunjukkan nilai pantulan Schmidt pantai Graham berjulat dari
40±1.7 ke 41±1.3 dengan sisihan piawai sebanyak 8.2 ke 6.4. Nilai
pantulan pantai Davis adalah 39±1.6 dengan sisihan piawai sebanyak
7.7. Batuan dari Pulau Nanson dan Pantai Danco mempunyai nilai pantulan
Schmidt masing-masing sebanyak 54±1.7 dengan sisihan piawai 8.0
dan 36±1.3 dengan sisihan piawai sebanyak 6.2. Nilai pantulan Schmidt
untuk batuan di Pulau Trinity adalah dari 29±1.4 hingga 32±1.7 dengan
sisihan piawai sebanyak 6.8 ke 8.1. Oleh itu, kekuatan mampatan
sepaksi bahan batuan masing-masing dari Pantai Graham, Pantai Davis,
Pantai Danco, Pulau Nanson dan Pulau Trinity adalah 73-108, 50,
59, 164 dan 45-59 MPa. Pengelasan kekuatan ISRM bahan
batuan untuk Pantai Graham, pantai Davis, Pantai Danco, Pulau Nanson
dan Pulau Trinity masing-masing adalah kuat (R4) ke batuan yang
sangat kuat (R5), batuan sederhana kuat (R3), batuan kuat (R4),
batuan sangat kuat (R5) dan sederhana kuat (R3) ke batuan kuat (R4).
Keputusan ini menunjukkan satu purata kekuatan bahan batuan secara
kuantitatif berdasarkan ujian pantulan tukul Schmidt di Semenanjung
Antartik.
Kata kunci: Bahan batuan; kekuatan mampatan sepaksi;
nilai pantulan tukul Schmidt
RUJUKAN
Adie,
A.J. 1962. The geology of Antarctica. Antarctic
Research: The Matthew Fontaine Maury Memorial Symposium 7: 26-38.
Aufmuth,
R.E. 1973. A systematic determination of engineering
criteria for rocks. Bull. Assoc. Eng. Geol. 11: 235-
245.
Craddock,
C. 1970. Tectonic Map of Antarctica.
New York: American Geographical Society.
Christine, E. 2000. A
review of rock weathering in Antarctica and its relationship to
studies in the Northern Hemisphere. GCAS. University of Canterbury
(Unpublished).
Deere,
D.U. & Miller, R.P. 1966. Engineering classification
and index properties for intact rocks. Tech Report Air
Force Weapons Lab. pp. 65-116.
Eagles,
G. 2003. Tectonic evolution of the Antarctic Phoenix
plate system since 15 Ma. Earth and Planetary Science
Letters 217: 97-109.
Elliot,
D.H. 1975. Tectonics of Antarctica: A review. American Journal
of Science 275: 45- 106.
Elliott,
C.E. 2006. Physical rock weathering along the Victoria Land Coast,
Antarctica. PhD Dissertation, University of Canterbury (Unpublished).
Fitzgerald,
P. 2002. Tectonics and landscapes evolution of
the Antarctic plate since the breakup of Gondwana, with an emphasis
on the West Anatrctic Rift System and the Transantarctic Mountains.
Royal Society of New Zealand Bulletin 35: 453-469.
Guild,
P.W., Piper, D.Z., Lee, M.P., McCoy, F.W., Manhein, F.T., Lane-Bostwick,
C.M., Swint-Iki, T.R., Grye, G. & Luepke, G. 1998. Explanatory
notes for the mineral-resources map of the Circum-Pacific Region
Antarctic sheet. US. Geological Survey.
Gney,
A., Altõndağ, R., Yavuz, H. & Sara, S. 2005. Evaluation
of the relationships between schmidt hardness
rebound number and other (engineering) properties of rocks. The
19th International Mining Congress and Fair of Turkey 19: 83-89.
Harley,
S.L. 2007. The geology of Antarctica. Encyclopedia of Life Support Systems.
Harley, S.L., Fitzsimons, I.C.W. & Yue, Z. 2013.
Antarctica and supercontinent evolution: Historical perspectives,
recent advances and unresolved issues. Geological Society, London.
383: 1-34.
Lim,
H-S., Jang, B-A., Kim, J-H. & Kang,
S-S. 2015. Estimation of R-value and uniaxial compressive strength
of rocks around the King Sejong Station, Barton Peninsula, Antarctica
from SilverSchmidt Q-value. Tunnel & Underground Space 25(2):
199-209.
ISRM.
1978. Suggested methods for the quantitative description of discontinuities
in rock masses. International Journal Rock Mechanics Mining Science
and Geomechanics Abstract 15: 319-368.
Karaman,
K. & Kesimal, A. 2015. Correlation of Schmidt rebound hardness
with uniaxial compressive strength and P- wave velocity of rock
materials. Arabian Journal for Science and Engineering 40(7):
1897-1906.
Katz,
O., Reches, Z. & Roegiers, J.C. 2000. Evaluation
of mechanical rock properties using a Schmidt hammer. Int.
J. Rock Mech. Min. Sci. 37: 723-728.
Larter,
R.D., Cunningham, A.P., Barker, P.F., Gohl, K. & Nitsche, F.O.
2002. Tectonic evolution of the Pacific margin of Antarctica 1. Late Cretaceous tectonic reconstructions. Journal of Geophysical
Research 107(B12): EPM 5-1-EPM 5-19.
Majewski, W. 2000. Cape Roberts Project:
Investigating the Cenozoic history of Antarctica. Polish Polar
Research 21(2): 89-97.
Murat Yurdakul, Ceylan, H. & Akdas, H. 2011.
A predictive model for uniaxial compressive strength of carbonate
rocks from Schmidt hardness. Civil, Construction and Environmental
Engineering Conference Presentations and Proceedings. p.
7.
Ramli Nazir, Momeni, E., Armaghani, D.J. & Amin, M.F.M.
2013. Prediction of unconfined compressive strength of limestone
rock samples using L-type Schmidt hammer. EJGE 18: 1768-1775.
Riffenburgh, B. 2007. Encyclopedia
of the Antarctic. London, Routledge: Taylor and Francis
Group.
Rist, M.A., Sammonds, P.R., Murrell, S.A.F., Meredith, P.G.,
Oerter, H. & Doake, C.S.M. 1996. Experimental fracture
and mechanical properties of Antarctic ice: Preliminary results.
Ann. Glaciol. 23: 284-292.
Selby,
M.J. 1980. A rock mass strength classification for geomorphic purposes:
With tests from Antarctica and New Zealand. Z. Geomorpho. 24:
31-51.
Shalabi,
F.I., Edward, J.C. & Al-Hattamleh, O.H. 2007. Estimation
of rock engineering properties using hardness tests. Engineering
Geology 90: 138-147.
Singh,
R.N., Hassani, F.P. & Elkõngton, P.A.S. 1983. The application
of strength and deformation index testing to the stability assessment
of coal measures excavations Proc. 24th US Symp. on
Rock Mech., Texas A&M Univ. AEG Balkema, Rotterdam. pp.
599-609.
Szilgyi,
K. & Borosnyi, A. 2009. 50 years of experience with the Schmidt
rebound hammer. Concrete Structure.
Tabatabaei,
S.H. 2003. Assessment of Schmidt rebound hammer for determination
of uniaxial compressive strength. Journal of Engineering Geology
1(3): 271 -280.
Torabi, S.R., Ataei, M. & Javanshir, M. 2010.
Application of Schmidt rebound number for estimating rock strength
under specific geological conditions. Journal of Mining &
Environment 1(2): 1- 8.
*Pengarang
untuk surat-menyurat; email: gdsbgoh@gmail.com
|