Sains Malaysiana 46(5)(2017): 733–741
http://dx.doi.org/10.17576/jsm-2017-4605-08
Effect
of Electrolyte (NaCl) and Temperature on the Mechanism of Cetyl
Trimethylammonium Bromide Micelles
(Kesan
Elektrolit (NaCl) dan Suhu terhadap Mekanisme Setil Trimetilammonium
Bromida
Misel)
ZIA UL HAQ1,
NOOR
REHMAN2*,
FARMAN
ALI2,
NASIR
MEHMOOD
KHAN2
&
HIDAYAT
ULLAH3
1Department of Chemistry,
Gomal University, D.I. Khan, Pakistan
2Department of Chemistry,
Shaheed BB University, 18000, Sheringal, Dir (Upper), Pakistan
3Institute
of Chemical Sciences, University of Peshawar, 25000, Pakistan
Diserahkan:
16 Julai 2016/Diterima: 24 Oktober 2016
ABSTRACT
In the last few decades, surfactants and electrolytes interaction
has gained considerable attention of researchers due to their industrial
and domestic applications. In this work, the effects of electrolyte
(NaCl) on the critical micelle concentration (CMC) of the cationic surfactant
cetyltrymethyl ammonium bromide (CTAB) at different temperatures
were investigated through different techniques such as conductometry,
surface tensiometer and viscosimeter. The results showed that the
values of CMC
of CTAB
decreased with the increase in temperature as well
as with the addition of NaCl. The value of CMC for pure CTAB was
calculated 0.98M at 303K, which was observed to decrease as temperature
increased and got value of 0.95M at 318K. Moreover the addition
of electrolyte NaCl into the surfactant lead to lowering of the
CMC and
obtained value of 0.90M at 3M of NaCl, indicating significant electrostatic
interactions between surfactant and electrolyte. Moreover the degree
of ionization(α) calculated for pure cationic surfactant CTAB was
0.219, which tends to increase with the addition of electrolyte,
while that of counter ion binding values (β) was observed to
decrease from 0.780 to 0.201. Furthermore, the conductivity of charged
micelle of surfactant and free ions of electrolyte contributed to
electric conductivity of aqueous micellar solution of surfactant.
The results can be helpful to develop better understanding about
interaction between electrolyte and surfactant.
Keywords: Electrical conductance; electrolyte NaCl; surface tension;
surfactant CTAB; viscosity
ABSTRAK
Beberapa dekad kebelakangan ini, surfaktans dan interaksi elektrolit
telah mendapat perhatian para penyelidik kerana kegunaannya dalam
perindustrian dan domestik. Dalam kertas ini, kesan elektrolit (NaCl)
ke atas kepekatan kritikal misel (CMC) of kationik surfaktans setiltrimetil
ammonium bromida (CTAB) pada suhu yang berbeza telah dikaji
melalui teknik yang berbeza seperti konduktometri, permukaan tensiometer
dan meter kelikatan. Hasil kajian menunjukkan bahawa nilai CMC untuk
CTAB
berkurang dengan peningkatan suhu serta penambahan
NaCl. Nilai CMC
untuk CTAB
tulen ialah 0.98M pada 303K dan diperhatikan menurun
apabila suhu meningkat dan memperoleh nilai 0.95M pada 318K. Selain
itu, penambahan elektrolit NaCl ke dalam surfaktans membawa kepada
penurunan CMC ini
dan memperoleh nilai 0.90M pada 3M NaCl yang menunjukkan interaksi
elektrostatik yang penting antara surfaktans dan elektrolit. Tambahan
pula, darjah pengionan(α) yang dikira untuk surfaktans kationik
tulen CTAB ialah
0.219, yang cenderung untuk meningkat dengan penambahan elektrolit,
manakala perbandingan nilai ikatan ion (β) diperhatikan menurun
daripada 0.780 untuk 0.201. Seterusnya, konduktiviti misel bercaj
surfaktans dan elektrolit ion bebas menyumbang kepada kekonduksian
elektrik larutan akueus misel surfaktans. Keputusan kajian diharap
dapat membantu meningkatkan pemahaman interaksi antara elektrolit
dan surfaktans.
Kata kunci: Elektrolit NaCl; CTAB
surfaktans; kekonduksian elektrik; kelikatan; ketegangan
permukaan
RUJUKAN
Abuin, E. & Scaiano, J.C. 1984. Exploratory study of the
effect of polyelectrolyte surfactant aggregates on photochemical
behavior. Journal of Americian Chemical Society 106: 6274-1983.
Anaker, E.W. & Ghose, H.M. 1968. Counterions and micelle
size. II. Light scattering by solutions of cetylpyridinium salts.
Journal of American Chemical Society 90: 3161-3166.
Anaker, E.W. & Ghose, H.M. 1963. Counterions and micelle
size. I. light scattering by solutions of dodecyltrimethylammonium
salts. Journal of Physical Chemistry 67: 1713-1716.
Antonello, D.C., Pietro, D.P., Gabriella, S., Romina, Z. &
Antonella, F. 2016 Optimizing the interaction of surfactants with
graphitic surfaces and clathrate hydrates. Langmuir 32: 6559-6570.
Bakshi, M.S. & Kaur, I. 2003. Head group modification controlled
mixing behaviour of binary cationic surfactants: conductometry,
viscometry and NMR studies. Journal of Colloid Polymer Science
281: 935-944.
Balakrishnan, V.K., Buncel, E. & Vanlood, G.W. 2005. Micellar
catalyzed degradation of fenitrothion, an organophosphorus pesticide,
in solution and soils. Environmental Science &Technology
39: 5824-5830.
Caron, J.E.G., Beaulieu, S. & Perron, G. 1995. Thermodynamic
micellar properties of n-octyldimethylamine oxide hydrochloride
in water. Langmuir 11: 1905-1911.
Chiranjeevi, P. & Vinod, L. 2009. Effect of molecular structure
of cationic surfactants on biophysical interactions of the surfactant-modified
nanoparticles with a model membrane and cellular uptake. Langmuir
17: 2369-2377.
Gamboa, C., Rios, H. & Sepulveda, L. 1989. Effect of the
nature of counterions on the sphere-to-rod transition in cetyltrimethylammonium
micelles. Journal of Physical Chemistry 93: 5540-5543.
Ghos, S. 2001. Surface chemical and micellar properties of
binary and ternary surfactant mixtures (Cetyl Pyridinium Chloride,
Tween-40, and Brij-56) in aqueous medium. Journal of Colloid
Interface Science 244: 128-138.
Ghos, S. & Moulik, S.P. 1998. The clouding behaviours of
binary mixtures of polyoxyethylene (10) cetylether (Brij-56) with
polyvinyl alcohol (PVA) and methyl cellulose (MC). Journal of
Colloid Interface Science 357: 201-208.
Graciani, M., Munoz, M., Rodriguez, A. & Moya, M.L. 2005.
Water-N,N-dimethylformamide alkyltrimethylammonium bromide micellar
solutions: Thermodynamic, structural, and kinetic studies. Langmuir
21: 3303-3310.
Hoff, E., Nystrom, B. & Lindman, B. 2001. Polymer-surfactant
interactions in dilute mixtures of a nonionic cellulose derivative
and an anionic surfactant. Langmuir 17: 28-34.
Kameyama, K., Muroya, A. & Takagi, T. 1997. Properties
of a mixed micellar system of sodium dodecyl sulfate and octylglucoside.
Journal of Colloid Interface Science 196: 48-52.
Knaebel, A. & Oda, R. 2000 Lamerall structure aqueous solutions
of a dimeric surfactant. Langmuir 16: 2489-2494.
Li, M., Li, Y.Z., Hua, H., He, X. & Li, Y. 2003. Studies
on 1-dodecene hydroformylation in biphasic catalytic system containing
mixed micelle. Journal of Molecular Catalysis A 194: 13-17.
Lindman, B. & Wennerstrom, H. 1980. Miceles. Amphiphile
aggregation in aqueous solution. Topics in Current Chemistry
87: 1-87.
NeumannÕ, M.G. & Tiera, M.J. 1997. Photochemical determination
of the interactions between surfactants and polyelectrolytes. Journal
of Pure & Applied Chemistry 69(4): 791-795.
Paredes, S., Sepulveda, L. & Tribout, M. 1984. Enthalpies
of micellization of the quaternary tetradecyl- and -cetyl ammonium
salts. Journal of Physical Chemistry 88: 1871- 1875.
Pethica, A. 1954. Surface tension of aqueous solutions of dodecyldimethylammonium
chloride, and its adsorption on aqueous surfaces. Trans Faraday
Society 50: 412-419.
Rakshit, A.K. & Sharma, B. 2003. The effect of amino acids
on the surface and thermodynamic properties of poly [oxyethylene
(10)] lauryl ether in aqueous solution. Colloid Polymer Science
281: 45-51.
Ramanathan, M., Shrestha, L.K., Mori, T., Ji, Q., Hill, J.P.
& Ariga, K. 2013. Amphiphile nanoarchitectonics: From basic
physical chemistry to advanced applications. Physical Chemistry
15: 10580-10611.
Rio, J.M., Prieto, G., Sarmieto, F. & Mosquera, V. 1995.
Thermodynamics of micellization of N-octyltrimethylammonium bromide
in different media. Langmuir 11: 1511-1514.
Rosen, M.J., Cohen, A.W., Dahanayake, M. & Hua, X. 1982.
Relationship of structure to properties in surfactants. 10. Surface
and thermodynamic properties of 2-dodecyloxypo ly(ethenoxyethanol)s,
C12H25(OC2H4)xOH, in aqueous solution. Journal of Physical Chemistry
86: 541-545.
Schweitzer, B., Felippe, A.C., Bo, A.D., Minatti, E., Zanette,
D. & Lopes, A. 2006. Journal of Colloid Interface Science
298: 457-466.
Sharma, B.G. & Rakshit, A.K. 1989. In Surfactants in
Solution, edited by Mittal, K.L. New York: Plenum Press. 7:
319-329.
Sharma, B.G. & Rakshit, A.K. 1989. Thermodynamics of micellization
of a nonionic surfactant: Brij 35 in aquo-sucrose solution. Journal
of Colloid Interface Science 129: 139-144.
Shinoda, K., Kobyashi, M. & Yamaguchi, N. 1987. Effect
of ÒIcebergÓ formation of water on the enthalpy and entropy of solution
of paraffin chain compounds: The effect of temperature on the critical
micelle concentration of lithium perfluorooctane sulfonate. Journal
of Physical Chemistry 91: 5292-5294.
Sudha, M., Renu, L., Neeti, S., Rajendra, J., Narain, D., Kandpal
& Kiran, P. 2012. Micellar properties of linear alkyl benzene
sulphonate in aqueous glucose solution. Journal of Chemical and
Pharmaceutical Research 4: 4468-4476.
Sujit, K.S., Sujeet, K.C. & Ajaya, B. 2016. The effect
of methanol on the micellar properties of dodecyltrimethylammonium
bromide (DTAB) in aqueous medium at different temperatures. Journal
of Surfactants and Detergents 19: 201-207.
Urata, K. & Takaishi, N. 2001. A perspective on the contribution
of surfactants and lipids toward ÒGreen ChemistryÓ: Present states
and future potential. Journal of Surfactants and Detergents 4:
191-200.
Zana, R., Yiv, S., Strazielle, C. & Lianos, P. 1981. Effect
of alcohol on the properties of micellar systems: I. Critical micellization
concentration, micelle molecular weight and ionization degree, and
solubility of alcohols in micellar solutions. Journal of Colloid
Interface Science 80: 208-223.
Zhu,
B.Y. & Zhao, Z.G. 1996. Foundation of Interface Chemistry.
Beijing: Chemical Industry Press. pp. 84-93.
*Pengarang
untuk surat-menyurat; email: noorrehman@sbbu.edu.pk
|