Sains Malaysiana 47(1)(2018): 109–115
http://dx.doi.org/10.17576/jsm-2018-4701-13
Production
of Biodiesel from Palm Fatty Acid Distillate by Microwave-Assisted Sulfonated
Glucose Acid Catalyst
(Penghasilan
Biodiesel daripada Sulingan Asid Kelapa Sawit Menggunakan Pemangkin Asid
Glukosa Bersulfonat Secara Ketuhar Gelombang Mikro)
NUR NAZLINA SAIMON, HENG KHUAN EU, ANWAR JOHARI, NORZITA NGADI, MAZURA JUSOH & ZAKI YAMANI ZAKARIA*
Chemical Engineering Department, Faculty of
Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai,
Johor Darul Takzim, Malaysia
Diserahkan: 26 Mac 2017/Diterima: 9 Jun 2017
ABSTRACT
Biodiesel, one of the renewable energy sources has gained
attention for decades as the alternative fuel due to its remarkable properties.
However, there are several drawbacks from the industrial production of
biodiesel such as the spike in the production cost, environmental issues
related to the usage of homogeneous catalyst and profitability in long term.
One of the solutions to eliminate the problem is by utilizing low cost starting
material such as palm fatty acid distillate (PFAD). PFAD is a byproduct from the refining of crude palm oil and abundantly
available. Esterification of PFAD to biodiesel will be much
easier with the presence of heterogeneous acid catalyst. Most of acid catalyst
preparation involves series of heating process using conventional method. In
this study, microwave was utilized in catalyst preparation, significantly
reducing the reaction time from conventional heating method. The catalyst
produced was characterized using X-Ray Diffraction (XRD),
Brunauer Emmet and Teller (BET), Scanning Electron Microscopy (SEM),
Temperature-Programmed Desorption - Ammonia (TPD-NH3)
and Fourier Transform Infrared (FTIR) while percentage yield
and conversion of the PFAD were analysed by gas
chromatography - flame ionization detector (GC-FID)
and acid-base titration, respectively. It has been demonstrated that the
percentage yield of biodiesel from the PFAD by employing sulfonated
glucose acid catalyst (SGAC) reached 98.23% under the
following conditions: molar ratio of methanol to PFAD of
10:1, catalyst loading of 2.5% and reaction temperature of 70oC.
The microwave-assisted SGAC showed its potential to replace
the SGAC produced via conventional heating method.
Keywords: Biodiesel; microwave-assisted; PFAD;
sulfonated glucose acid catalyst
ABSTRAK
Biodiesel, salah satu daripada sumber tenaga boleh diperbaharui
telah mendapat perhatian selama beberapa dekad ini sebagai bahan bakar
alternatif kerana sifat luar biasanya. Walau bagaimanapun, terdapat beberapa
halangan yang dihadapi oleh industri penghasilan biodiesel seperti kenaikan
dalam kos pengeluaran, isu alam sekitar yang berkaitan dengan penggunaan
pemangkin homogen serta keuntungan dalam jangka masa panjang. Untuk
menyelesaikan isu kos pengeluaran adalah melalui penggunaan bahan mentah kos
rendah seperti sulingan asid lemak sawit (PFAD). PFAD adalah hasil sampingan bernilai rendah daripada penapisan minyak
sawit mentah dan terhasil dalam kuantiti yang banyak. Esterifikasi PFAD kepada biodiesel menjadi lebih mudah dengan kehadiran pemangkin
asid heterogen. Kebanyakan cara penyediaan pemangkin berasid melibatkan
beberapa siri pemanasan menggunakan kaedah konvensional. Ketuhar gelombang
mikro digunakan dalam penyediaan pemangkin supaya dapat mengurangkan masa
reaksi daripada kaedah pemanasan konvensional. Pemangkin yang dihasilkan
dicirikan menggunakan pembelauan sinar X (XRD),
Brunauer Emmet dan Teller (BET), mikroskopi elektron imbasan (SEM),
program suhu penyahserapan - ammonia (TPD-NH3)
dan transformasi Fourier Inframerah (FTIR) manakala peratus
keputusan dan penukaran PFAD masing-masing telah dianalisis
oleh gas kromatografi - nyalaan pengesan pengionan (GC-FID)
dan penitratan asid-alkali. Hasil kajian menunjukkan bahawa hasil peratusan
biodiesel daripada PFAD dengan menggunakan pemangkin asid
glukosa bersulfonat (SGAC) mencapai 98.23% di bawah kondisi
berikut: Nisbah molar metanol : PFAD is 10: 1, penggunaan
pemangkin sebanyak 2.5 % bt. dan suhu tindak balas 70°C. SGAC yang
dihasilkan melalui pemanasan ketuhar gelombang mikro menunjukkan potensi untuk
menggantikan SGAC yang dihasilkan melalui kaedah pemanasan
konvensional.
Kata kunci: Bantuan ketuhar
gelombang mikro; biodiesel; pemangkin asid glukosa bersulfonat; PFAD
RUJUKAN
Abreu, F.R., Alves, M.B., Macêdo, C.C.S., Zara,
L.F. & Suarez, P.A.Z. 2005. New multi-phase catalytic systems based on tin
compounds active for vegetable oil transesterificaton reaction. Journal of
Molecular Catalysis A: Chemical 227(1- 2): 263-267.
Achten, W.M.J., Verchot, L., Franken, Y.J.,
Mathijs, E., Singh, V.P., Aerts, R. & Muys, B. 2008. Jatropha bio-diesel
production and use. Biomass and Bioenergy 32(12): 1063- 1084.
Ang, G.T., Ooi, S.N., Tan, K.T., Lee, K.T. &
Mohamed, A.R. 2015. Optimization and kinetic studies of sea mango (Cerbera
odollam) oil for biodiesel production via supercritical reaction. Energy
Conversion and Management 99: 242-251.
Atadashi, I.M., Aroua, M.K., Abdul Aziz, A.R.
& Sulaiman, N.M.N. 2012. Production of biodiesel using high free fatty acid
feedstocks. Renewable and Sustainable Energy Reviews 16(5): 3275-3285.
Berrios, M., Siles, J., Martín, M.A. &
Martín, A. 2007. A kinetic study of the esterification of free fatty acids
(FFA) in sunflower oil. Fuel 86(15): 2383-2388.
Chongkhong, S., Tongurai, C., Chetpattananondh,
P. & Bunyakan, C. 2007. Biodiesel production by esterification of palm
fatty acid distillate. Biomass and Bioenergy 31(8): 563-568.
Di Serio, M., Tesser, R., Pengmei, L. &
Santacesaria, E. 2007. Heterogeneous catalysts for biodiesel production. Energy
& Fuels 22(1): 207-217.
Helwani, Z., Othman, M.R., Aziz, N., Kim, J.
& Fernando, W.J.N. 2009. Solid heterogeneous catalysts for
transesterification of triglycerides with methanol: A review. Applied
Catalysis A: General 363(1-2): 1-10.
Kanitkar, A., Balasubramanian, S., Lima, M.
& Boldor, D. 2011. A critical comparison of methyl and ethyl esters
production from soybean and rice bran oil in the presence of microwaves. Bioresource
Technology 102(17): 7896-7902.
Lam, M.K. & Lee, K.T. 2011. Chapter 15 -
Production of biodiesel using palm oil A2 -, In Biofuels, edited by
Pandey, A., Larroche, C., Ricke S.C., Dussap, C-G. & Gnansounou, E.
Amsterdam: Academic Press. pp. 353-374.
Lokman, I.M., Rashid, U. & Taufiq-Yap, Y.H.
2015. Production of biodiesel from palm fatty acid distillate using
sulfonated-glucose solid acid catalyst: Characterization and optimization. Chinese
Journal of Chemical Engineering 23(11): 1857-1864.
Lokman, I.M., Rashid, U., Taufiq-Yap, Y.H. &
Yunus, R. 2015. Methyl ester production from palm fatty acid distillate using
sulfonated glucose-derived acid catalyst. Renewable Energy 81: 347-354.
Lou, W.Y., Zong, M.H. & Duan, Z.Q. 2008.
Efficient production of biodiesel from high free fatty acid-containing waste
oils using various carbohydrate-derived solid acid catalysts. Bioresource
Technology 99(18): 8752-8758.
Luyben, W.L. 2000. Impact of reaction activation
energy on plantwide control structures in adiabatic tubular reactor systems. Industrial
& Engineering Chemistry Research 39(7): 2345-2354.
Malaysian Palm Oil Board, M. 2009. Production
Technology of Biodiesel from Palm Fatty Acid Distillate (PFAD). http://
palmoilis.mpob.gov.my/publications/TOT/TT-430.pdf (Accessed on Feb, 2017).
Shu, Q., Zhang, Q., Xu, G., Nawaz, Z., Wang, D.
& Wang, J. 2009. Synthesis of biodiesel from cottonseed oil and methanol
using a carbon-based solid acid catalyst. Fuel Processing Technology 90(7):
1002-1008.
Zong, M.H., Duan, Z.Q., Lou, W.Y., Smith, T.J.
& Wu, H. 2007. Preparation of a sugar catalyst and its use for highly
efficient production of biodiesel. Green Chemistry 9(5): 434-437.
Zong, M.H., Duan, Z.Q., Lou, W.Y., Smith, T.J.
& Wu, H. 2007. Preparation of a sugar catalyst and its use for highly
efficient production of biodiesel. Green Chemistry 9(5): 434-437.
*Pengarang untuk surat-menyurat; email: zakiyamani@utm.my
|