Sains Malaysiana 47(1)(2018): 157–168
http://dx.doi.org/10.17576/jsm-2018-4701-19
Influence
of Precursor Concentration and Temperature on the Formation of Nanosilver in
Chemical Reduction Method
(Pengaruh
Kepekatan Pelopor dan Suhu terhadap Pembentukan Nanoargentum dalam Kaedah
Pengurangan Kimia)
N. AHMAD1, B.C. ANG2*, M.A. AMALINA1 & C.W. BONG3,4
1Department of
Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala
Lumpur, Federal Territory, Malaysia
2Center of Advanced Materials,
Department of Chemical Engineering, Faculty of Engineering, University of
Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
3Institute of
Biological Sciences, (Microbiology Unit), Faculty of Science, University of
Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
4Institute
of Ocean and Earth Science (IOES), University of Malaya, 50603 Kuala Lumpur,
Federal Territory, Malaysia
Diserahkan:
31 Disember 2016/Diterima: 8 Jun 2017
ABSTRACT
Nanosilver particles (NSPs) were produced by the
reduction of silver nitrate using glucose as reducer, poly (vinyl pyrrolidone)
as stabilizer and sodium hydroxide as reaction enhancer. Two parameters were
investigated which are silver nitrate concentration (0.1 M, 0.5 M and 1.0 M)
and reaction temperature (60°C and 80°C). Through spectral analysis using
ultraviolet-visible spectrophotometer (UV-vis), all the samples
recorded the maximum peak in the range of 384-411 nm which verified the
formation of NSPs. TEM images showed the nanoparticles
have spherical shape with the size range of 25-39 nm. Particle size and zeta
potential analysis recorded the hydrodynamic size of nanoparticles in the range
of 85-105 nm and the zeta potential ranging from -25 to -30 mV, under the pH
value of 8. X-ray diffraction analysis showed that the NSPs
have face center cubic (FCC) structure. All the produced NSPs
surprisingly showed ferromagnetic-like behaviour based on the magnetization
curves. FTIR result confirmed the presence of poly (vinyl
pyrrolidone) on the NSPs surface. Furthermore, at the
reaction temperature 60°C, the crystallite size, physical size as well as
hydrodynamic size increased as the precursor concentration increased from 0.1 M
to 0.5 M. However, as the precursor concentration further increases to 1.0 M,
the size become smaller due to incomplete reduction process. In contrast, at
80°C, the sizes was gradually increased as the precursor concentration
increases up to 1.0 M. In terms of controlled precursor concentration, the
crystallite size and physical size become smaller as the temperature increases.
Keywords: Chemical reduction; nanosilver; precursor concentration;
reaction temperature
ABSTRAK
Zarah nanoargentum (NSPs) telah dihasilkan oleh pengurangan
argentum nitrat menggunakan glukosa sebagai pengecil, poli (vinil
pirolidon) sebagai penstabil dan natrium hidroksida sebagai penggalak
tindak balas. Dua parameter yang dikaji merangkumi kepekatan argentum
nitrat (0.1 M, 0.5 M dan 1.0 M) dan suhu tindak balas (60°C dan 80°C). Melalui analisis spektrum menggunakan
sinar ultra-ungu boleh nampak spektrofotometer (UV-vis), puncak maksimum kesemua
sampel direkodkan dalam lingkungan 384-411 nm yang mengesahkan pembentukan
NSPs. Imej-imej TEM menunjukkan nanozarah mempunyai
bentuk sfera dengan julat saiz 25-39 nm. Analisis saiz zarah dan
zeta potential mencatatkan saiz hidrodinamik nanozarah dalam lingkungan
85-105 nm dan zeta potential meliputi -25 hingga -30 mV, di bawah
nilai pH 8. Analisis pembelauan sinar-X mendedahkan bahawa NSPs mempunyai struktur face
center cubic (FCC). Tanpa dijangka kesemua NSPs
yang dihasilkan menunjukkan kelakuan seperti feromagnetik berdasarkan
lengkung pemagnetan. Transformasi Fourier inframerah spektrometer
(FTIR)
mengesahkan kehadiran poli (vinil pirolidon) di permukaan NSPs.
Tambahan pula, pada suhu tindak balas 60°C, saiz kumin hablur,
saiz fizikal serta saiz hidrodinamik meningkat apabila kepekatan
pelopor meningkat daripada 0.1 M ke 0.5 M. Walau bagaimanapun, apabila
kepekatan pelopor terus meningkat kepada 1.0 M, saiz menjadi lebih
kecil disebabkan proses pengurangan tidak sempurna. Sebaliknya,
di 80°C, saiz beransur-ansur meningkat apabila kepekatan pelopor
meningkat sehingga 1.0 M. Daripada segi kepekatan pelopor yang terkawal,
saiz kumin hablur dan saiz fizikal menjadi lebih kecil apabila suhu
bertambah.
Kata kunci: Kepekatan pelopor; nanoargentum;
pengurangan kimia; suhu tindak balas
RUJUKAN
Abou El-Nour, K.M.M., Eftaiha, A.A., Al-Warthan, A. &
Ammar, R.A.A. 2010. Synthesis and applications of silver nanoparticles. Arabian
Journal of Chemistry 3(3): 135-140.
Agnihotri, S., Mukherji, S. & Mukherji, S. 2014.
Size-controlled silver nanoparticles synthesized over the range 5-100 nm using
the same protocol and their antibacterial efficacy. RSC Advances 4(8):
3974-3983.
Ahmad, T., Wani, I.A., Ahmed, J. & Al-Hartomy, O.A.
2014. Effect of gold ion concentration on size and properties of gold
nanoparticles in TritonX-100 based inverse microemulsions. Applied
Nanoscience 4(4): 491-498.
Ajitha, B., Divya, A., Harish, G.S. & Sreedhara, R.D.
2013. The influence of silver precursor concentration on size of silver
nanoparticles grown by soft chemical route. Research Journal of Physical
Sciences 1(7): 11-14.
Alahmad, A. 2014. Preparation and characterization of silver
nanoparticles. International Journal of ChemTech Research 6(1): 450-459.
Allen, E., Henshaw, J. & Smith, P. 2001. A review of
particle agglomeration. U.S. Department of Energy. pp. 1-42.
Amany, A., El-Rab, S.F.G. & Gad, F. 2012. Effect of
reducing and protecting agents on size of silver nanoparticles and their
anti-bacterial activity. Der. Pharma. Chemica. 4(1): 53-65.
Bell, W.C. & Myrick, M.L. 2001. Preparation and
characterization of nanoscale silver colloids by two novel synthetic routes. Journal
of Colloid and Interface Science 242(2): 300-305.
Bhui, D.K., Bar, H., Sarkar, P., Sahoo, G.P., De, S.P. &
Misra, A. 2009. Synthesis and UV-vis spectroscopic study of silver
nanoparticles in aqueous SDS solution. Journal of Molecular Liquids 145(1):
33-37.
Bryaskova, R., Pencheva, D., Nikolov, S. & Kantardjiev,
T. 2011. Synthesis and comparative study on the antimicrobial activity of
hybrid materials based on silver nanoparticles (AgNps) stabilized by
polyvinylpyrrolidone (PVP). Journal of Chemical Biology 4(4): 185-191.
Carneiro-da-Cunha, M.G., Cerqueira, M.A., Souza, B.W.S.,
Teixeira, J.A. & Vicente, A.A. 2011. Influence of concentration, ionic
strength and pH on zeta potential and mean hydrodynamic diameter of edible
polysaccharide solutions envisaged for multinanolayered films production. Carbohydrate
Polymers 85(3): 522-528.
Chiad, B., Ali, N.,
Sadik, Z. & Al-Awadi, S. 2013. Study the optimum conditions of synthesis
AgNP by chemical reduction method. Journal of Kerbala University 11(4):
40-46.
Choo, H.P., Liew, K.Y. & Liu, H. 2002. Factors affecting
the size of polymer stabilized Pd nanoparticles. Journal of Materials
Chemistry 12: 934-937.
Darroudi, M., Ahmad, M.B., Abdullah, A.H., Ibrahim, N.A.
& Shameli, K. 2010. Effect of accelerator in green synthesis of silver
nanoparticles. International Journal of Molecular Sciences 11(10):
3898-3905.
Eid, C., Assaf, E., Habchi, R., Miele, P. & Bechelany,
M. 2015. Tunable properties of GO-doped CoFe2O4 nanofibers
elaborated by electrospinning. RSC Advances 5: 97849- 97854.
Fayaz, A., Balaji, K., Kalaichelvan, P. & Venkatesan, R.
2009. Fungal based synthesis of silver nanoparticles - An effect of temperature
on the size of particles. Colloids and Surfaces B: Biointerfaces 74(1):
123-126.
Foliatini, F., Yulizar, Y. & Hafizah, M.A.E. 2015. The
synthesis of alginate-capped silver nanoparticles under microwave irradiation. Journal
of Mathematical and Fundamental Sciences 47(1): 31-50.
Ge, L., Li, Q., Wang, M., Ouyang, J., Li, X. & Xing,
M.M.Q. 2014. Nanosilver particles in medical applications: Synthesis,
performance, and toxicity. International Journal of Nanomedicine 9:
2399-2407.
Hassanien, A.S. & Akl, A.A. 2015. Crystal imperfections
and Mott parameters of sprayed nanostructure IrO2 thin films. Physica B:
Condensed Matter 473: 11-19.
Hee, D.J. & Jinki, J. 2007. The effects of temperature
on particle size in the gas-phase production of TiO2. Aerosol
Science and Technology 23(4): 553-560.
Janardhanan, R., Karuppaiah, M., Hebalkar, N. & Rao,
T.N. 2009. Synthesis and surface chemistry of nano silver particles. Polyhedron 28(12): 2522-2530.
Jiang, X., Chen, W., Chen, C., Xiong, S. & Yu, A. 2011.
Role of temperature in the growth of silver nanoparticles through a synergetic
reduction approach. Nanoscale Res. Lett. 6(1): 32.
Jiang, H., Moon, K.S., Zhang, Z., Pothukuchi, S. & Wong,
C. 2006. Variable frequency microwave synthesis of silver nanoparticles. Journal
of Nanoparticle Research 8(1): 117- 124.
Jo, Y., Jung, M.H., Kyum, M.C., Park, K.H. & Kim, Y.N.
2006. Nano-sized effect on the magnetic properties of Ag clusters. Journal
of Magnetics 11(4): 160-163.
Kheybari, S., Samadi, N., Hosseini, S.V., Fazeli, A. &
Fazeli, M.R. 2010. Synthesis and antimicrobial effects of silver nanoparticles
produced by chemical reduction method. DARU Journal of Pharmaceutical
Sciences 18(3): 168-172.
Lah, N.A.C. & Johan, M.R. 2011. Facile shape control
synthesis and optical properties of silver nanoparticles stabilized by Daxad 19
surfactant. Applied Surface Science 257(17): 7494-7500.
Landage, S., Wasif, A. & Dhuppe, P. 2014. Synthesis of
nanosilver using chemical reduction methods. International Journal of
Advanced Research in Engineering and Applied Sciences 3(5): 14-22.
Lanje, A.S., Sharma, S.J. & Pode, R.B. 2010. Synthesis
of silver nanoparticles: A safer alternative to conventional antimicrobial and
antibacterial agents. J. Chem. Pharm. Res. 2(3): 478-483.
Lanje, A.S., Sharma, S.J. & Pode, R.B. 2010. Magnetic
and electrical properties of nickel nanoparticles prepared by hydrazine reduction
method. Arch. Phys. Res. 1(1): 49-56.
Li, Z.H., Wang, Y.W. & Yu, Q.Q. 2010. Significant
parameters in the optimization of synthesis of silver nanoparticles by chemical
reduction method. Journal of Materials Engineering and Performance 19(2):
252-256.
Liu, H., Zhang, B., Shi, H., Tang, Y., Jiao, K. & Fu, X.
2008. Hydrothermal synthesis of monodisperse Ag2Se
nanoparticles in the presence of PVP and KI and their application as
oligonucleotide labels. Journal of Materials Chemistry 18: 2573-2580.
Lu, W., Liao, F., Luo, Y., Chang, G. & Sun, X. 2011.
Hydrothermal synthesis of well-stable silver nanoparticles and their
application for enzymeless hydrogen peroxide detection. Electrochimica Acta 56(5):
2295-2298.
Nersisyan, H., Lee, J., Son, H., Won, C. & Maeng, D.
2003. A new and effective chemical reduction method for preparation of
nanosized silver powder and colloid dispersion. Materials Research Bulletin 38(6):
949-956.
Pulit, J., Banach, M. & Kowalski, Z. 2011. Nanosilver -
making difficult decisions. The International Council on Nanotechnologies 18(2):
185-195.
Shin, H.S., Yang, H.J., Kim, S.B. & Lee, M.S. 2004.
Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl
pyrrolidone in γ-irradiated silver nitrate solution. Journal of Colloid
and Interface Science 274(1): 89-94.
Sibiya, P. & Moloto, M. 2014. Effect of precursor
concentration and pH on the shape and size of starch capped silver selenide
(Ag2Se) nanoparticles. Chalcogenide Lett. 11: 577-588.
Šileikaitė, A., Prosyčevas, I., Puišo,
J., Juraitis, A. & Guobienė, A. 2006. Analysis of silver nanoparticles
produced by chemical reduction of silver salt solution. Mater. Sci.-Medzg. 12:
287-291.
Sun, X., Dong, S. & Wang, E. 2004. One-step preparation
and characterization of poly (propyleneimine) dendrimer-protected silver
nanoclusters. Macromolecules 37(19): 7105-7108.
Suwatthanarak, T., Than-ardna, B., Danwanichakul, D. &
Danwanichakul, P. 2016. Synthesis of silver nanoparticles in skim natural
rubber latex at room temperature. Materials Letters 168: 31-35.
Wang, H., Qiao, X., Chen, J. & Ding, S. 2005.
Preparation of silver nanoparticles by chemical reduction method. Colloids
and Surfaces A: Physicochemical and Engineering Aspects 256(2-3): 111-115.
Wang, H., Qiao, X., Chen, J., Wang, X. & Ding, S. 2005.
Mechanisms of PVP in the preparation of silver nanoparticles. Materials
Chemistry and Physics 94(2): 449-453.
Zhang, W., Qiao, X. & Chen, J. 2007. Synthesis of silver
nanoparticles-Effects of concerned parameters in water/ oil microemulsion. Materials
Science and Engineering: B 142(1): 1-15.
Zhang, Z., Zhao, B. & Hu, L. 1996. PVP protective
mechanism of ultrafine silver powder synthesized by chemical reduction
processes. Journal of Solid State Chemistry 121(1): 105-110.
*Pengarang
untuk surat-menyurat; email: amelynang@um.edu.my
|