Sains Malaysiana 47(2)(2018):
367-376
http://dx.doi.org/10.17576/jsm-2018-4702-19
The Effect of Kenaf Filler
Reinforcement on the Mechanical and Physical Properties of Injection Moulded
Polypropylene Composites
(Kesan Penguatan Pengisi
Kenaf ke atas Sifat Mekanik dan Fizikal Pengacuan Suntikan Komposit
Polipropilena)
Mohd
Khairul Fadzly Md Radzi1*, Norhamidi Muhamad1, Majid Niaz
Akhtar2, Zakaria Razak1 & Farhana Mohd Foudzi1
1Department of Mechanical & Materials Engineering,
Faculty of Engineering & Built Environment, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Department of Physics, COMSATS Institute of
Information Technology, 54000 Lahore, Pakistan
Diserahkan: 8 Jun 2017/Diterima: 18 Ogos
2017
ABSTRACT
Natural fibres potentially offer better reinforcement to improve the mechanical and physical
properties of polymer composites. However, these natural materials at this
stage are not fully explored yet due to the fibres themselves have limited heat resistance and are quite sensitive to moisture. This
limitation will weaken the adhesion when interacting with thermoplastic
matrices during the processing of composites. Therefore, the main purpose of
this study is to investigate inherent strength characteristics among kenaf
(core and bast) fillers as a reinforcement in
polypropylene composites at various geometries and loadings via the injection moulding process. The composite materials
consisted of kenaf with the geometric core filler of the 20 mesh (992 µm), 40
mesh (460 µm) and bast filler (166.9 µm) were mixed with polypropylene
based on the filler loadings of 10 up to 40 wt. %. The results showed that bast
filled composites had the highest
tensile strength of 19.52 MPa at 30 wt. %, compared to core filled
composites. Instead, 20 mesh core filled composites were obtained had the
highest flexural strength which values were 25 MPa and 29 MPa at 20 wt. % and
30 wt. %, respectively. While 40 mesh core filled composites had the highest
values of 25.35
MPa at 40 wt. % of filler loading compared to bast filled composites. SEM micrograph images showed the good
interfacial bonding of core filler which surrounded by PP leading to diffusion
and permeation of bonding. In conclusion, the use of kenaf (core and bast)
fillers as a reinforcement in composite materials is reasonable to
maximise the use of fibre from natural sources.
Keywords: Injection moulding; kenaf filler;
mechanical properties; polypropylene; SEM micrograph images
ABSTRAK
Serabut
semula jadi menawarkan kekuatan penguat yang lebih baik bagi meningkatkan
sifat mekanik dan fizikal komposit polimer. Walau bagaimanapun, bahan semula
jadi ini masih belum diterokai sepenuhnya kerana sifat serabut
itu sendiri yang mempunyai rintangan haba yang terhad dan sensitif
terhadap lembapan. Keterbatasan ini akan
melemahkan rekatan apabila digandingkan bersama matrik termoplastik
semasa pemprosesan komposit. Maka kajian ini bertujuan untuk mengkaji
kekuatan yang wujud antara pengisi (teras dan bast) kenaf sebagai
penguat dalam komposit polipropilena dengan pelbagai geometri
dan pembebanan melalui proses pengacuanan suntikan. Bahan komposit
yang terdiri daripada kenaf dengan geometri pengisi teras 20 mesh
(992 µm), teras 40 mesh (460 µm) dan pengisi bast
(166.9 µm) yang dicampur dengan polipropilena
berdasarkan pengisi sebanyak 10 hingga 40 % bt. Keputusan menunjukkan
komposit berpengisi bast mempunyai nilai kekuatan tegangan yang
tertinggi sebanyak 19.52 MPa pada 30 % bt., berbanding komposit berpengisi teras. Sebaliknya, komposit berpengisi teras
20 mesh pula didapati mempunyai kekuatan lenturan yang tertinggi
sebanyak 25 MPa dan 29 MPa masing-masing pada 20 dan 30 % bt.
Manakala komposit berpengisi 40 mesh mempunyai kekuatan lenturan
bernilai 25.35 MPa pada beban 40 % bt., berbanding komposit berpengisi
bast. Keputusan mikrograf SEM menunjukkan
ikatan antara muka yang terbaik terbentuk oleh pengisi teras kenaf
yang dikelilingi sepenuhnya dengan PP, dengan ikatan terbentuk
melalui penyebaran dan penyerapan. Kesimpulannya,
penggunaan pengisi (teras dan bast) kenaf sebagai bahan penguat
dalam komposit adalah munasabah dalam usaha untuk memaksimumkan
sepenuhnya penggunaan gentian daripada sumber semula jadi.
Kata kunci: Kekuatan
mekanik; mikrografi SEM; pengacuanan suntikan; pengisi kenaf; polipropilena
RUJUKAN
Abdul
Khalil, H.P.S., Ireana Yusra A.F., Bhat, A.H. & Jawaid, M. 2010. Cell wall
ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian
cultivated kenaf fiber. Industrial Crops
and Products 31(1): 113-121.
Aisyah,
H.A., Paridah, M.T., Sahri, M.H., Anwar, U.M.K. & Astimar, A.A. 2013. Properties
of medium density fibreboard (MDF) from kenaf (Hibiscus cannabinus L.) core as function of refining conditions. Composites Part B: Engineering 44(1): 592-596.
Akil,
H.M., Omar, M.F., Mazuki, A.A.M., Safiee, S.Z., Ishak, A.M. & Abu Bakar, A.
2011. Kenaf fiber reinforced composites: A review. Materials & Design 32(8-9): 4107-4121.
Anuar,
H., Zuraida, A., Kovacs, J.G. & Tabi, T. 2012. Improvement of mechanical
properties of injection-molded polylactic acid-kenaf fiber biocomposite. Journal of Thermoplastic Composite Materials 25(2): 153-164.
Balasuriya, P.W., Ye, L. & Mai, Y.W. 2001. Mechanical
properties of wood flake–polyethylene composites. Part I: effects of
processing methods and matrix melt flow behaviour. Composites Part A:
Applied Science and Manufacturing 32(5): 619-629.
Bismarck,
A., Aranberri‐Askargorta, I.,
Springer, J., Thomas, L., Bernhard, W., Artemis, S., Ilja, S. & Hans‐Heinrich, L. 2002. Surface characterization of flax, hemp
and cellulose fibers; surface properties and the water uptake behavior. Polymer Composites 23(5): 872-894.
Clemons,
C. & Anand, R.S. 2007. Instrumented impact testing of kenaf fiber reinforced
polypropylene composites: Effects of temperature and composition. Journal of Reinforced Plastics and
Composites 26(15): 1587-1602.
Dehbari,
N., Moazeni, N. & Rahman, W.A. 2014. Effects of kenaf core on properties of
poly( lactic acid) bio- composite. Polymer Composites 35(6): 1220-1227.
Dzuhri,
S., Yuhana, N.Y. & Khairulazfar, M. 2015. Thermal stability and
decomposition study of epoxy/clay nanocomposites. Sains Malaysiana 44(3): 441-448.
El-Shekeil,
Y.A., Salit, M.S., Abdan, K. & Zainudin, E.S. 2011. Development of a new
kenaf bast fiber-reinforced thermoplastic polyurethane composite. Bioresources 6(4): 4662-4672.
El-Shekeil,
Y.A., Salit, M.S., Abdan, K. & Zainudin, E.S. 2012. Influence of fiber content
on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic
polyurethane composites. Materials &
Design 40: 299-303.
Fu,
S.Y., Feng, X.Q., Lauke, B. & Mai, Y.M. 2008. Effects of particle size,
particle/matrix interface adhesion and particle loading on mechanical
properties of particulate–polymer composites. Composites Part B: Engineering 39(6): 933-961.
Habibi,
Y., El-Zawawy, W.K., Ibrahim, M.M. & Dufresne, A. 2008. Processing and
characterization of reinforced polyethylene composites made with
lignocellulosic fibers from Egyptian agro-industrial residues. Composites Science and Technology 68(7):
1877-1885.
Hashim,
S.N.A.S., Zakaria, S., Chia, C.H., Pua, F.L. & Jaafar, S.N.S. 2016.
Chemical and thermal properties of purified kenaf core and oil palm empty fruit
bunch lignin. Sains Malaysiana 45(11):
1649-1653.
Ishak,
M.R., Zulkiflle, L., Sapuan, S.M., Edeerozey, A.M.M. & Othman, I.S. 2010.
Mechanical properties of kenaf bast and core fibre reinforced unsaturated
polyester composites. IOP Conference
Series: Materials Science and Engineering 11(1).
Islam,
M.R., Beg, M.D.H. & Gupta, A. 2012. Characterization of alkali-treated kenaf
fibre-reinforced recycled polypropylene composites. Journal of Thermoplastic Composite Materials 27(7): 909-932.
Ismail,
A., Hassan, A., Bakar, A.A. & Jawaid, M. 2013. Flame retardancy and
mechanical properties of kenaf filled polypropylene (pp) containing ammonium
polyphosphate (APP). Sains Malaysiana 42(4): 429-434.
Ismail,
H., Abdullah, A.H. & Bakar, A.A. 2010. Kenaf core reinforced high-density
polyethylene/soya powder composites: The effects of filler loading and
compatibilizer. Journal of Reinforced Plastics
and Composites 29(16): 2489-2497.
Jeyanthi,
S., Purushothaman, M. & Rani, J.J. 2011. Development of ecofriendly
thermoplastics for automotive components. International
Conference on Green Technology and Environmental Conservation, (GTEC 2011).
Khalil,
H.P.S.A., Tehrani, M.A., Davoudpour, Y., Bhat, A.H., Jawaid, M. & Hassan, A. 2013. Natural
fiber reinforced poly(vinyl chloride) composites: A review. Journal of Reinforced Plastics and
Composites 32(5): 330-356.
Khalina,
A., Ali, A., Jalaluddin, H., Hasniza, M.Z., Haniffah, W.H.W.M., Yusri, M.Y.
& Shuriati. M.G. 2011. Feasibility study of processing natural fiber
reinforced plastic composite by injection molding. Materials Testing 53(4): 229-232.
Koronis,
G., Silva, A. & Fontul, M. 2013. Green composites: A review of adequate
materials for automotive applications. Composites
Part B-Engineering 49: 93-93.
Ku,
H., Wang, H., Pattarachaiyakoop, N. & Trada, M. 2011. A review on the
tensile properties of natural fiber reinforced polymer composites. Composites Part B-Engineering 42(4): 856-873.
Kwon,
H.J., Sunthornvarabhas, J., Park, J.W., Lee, J.H., Kim, H.J., Piyachomkwan, K.,
Sriroth, K. & Cho, D. 2014. Tensile properties of kenaf fiber and corn husk
flour reinforced poly (lactic acid) hybrid bio-composites: Role of aspect ratio
of natural fibers. Composites Part B:
Engineering 56: 232-237.
Othman,
A. & Ismail, E.E. 2007. Quasi-static energy absorption performance of
conical coir fibre reinforced polyester composites. Jurnal Kejuruteraan 19: 127-136.
Paridah,
M.T., Hafizah, A.W.N., Zaidon, A., Azmi,
I., Nor, M.Y.M. & Yuziah, M.Y.N. 2009. Bonding properties and performance
of multi-layered kenaf board. Journal of
Tropical Forest Science 21(2) :113-122.
Rahman,
S.K. & Halim, Z. 2012. Thermal analysis of kenaf sandwich core panel. Advanced Materials Research 576: 488-491.
Reddy,
N. & Yang, Y. 2005. Biofibers from agricultural byproducts for industrial
applications. TRENDS in Biotechnology 23(1): 22-27.
Rowell,
R.M., Sanadi, A.R., Caulfield, D.F. & Jacobson, R.E. 1997. Utilization of
natural fibers in plastic composites: Problems and opportunities. Lignocellulosic-Plastics Composites: pp.
23-51.
Rozman,
H.D., Musa, L. Azniwati, A.A. & Rozyanty, A.R. 2011. Tensile properties of
kenaf/unsaturated polyester composites filled with a montmorillonite filler. Journal of Applied Polymer Science 119(5):
2549-2553.
Saad,
M.J. & Kamal, I. 2012. Mechanical and physical properties of low density
kenaf core particleboards bonded with different resins. Journal of Science and Technology 4(1).
Sarifuddin,
N., Ismail, H. & Ahmad, Z. 2013. The effect of kenaf core fibre loading on
properties of low density polyethylene/thermoplastic sago starch/kenaf core
fiber composites. Journal of Physical
Science 24(2): 97-115.
Shibata,
S., Cao, Y. & Fukumoto, I. 2006. Study of the flexural modulus of natural
fiber/polypropylene composites by injection molding. Journal of Applied Polymer Science 100(2): 911-917.
Yang,
Y.Q., Murakami, M. & Hamada, H. 2012. Molding method, thermal and
mechanical properties of jute/pla injection molding. Journal of Polymers and the Environment 20(4): 1124-1133.
Yusoff,
M., Zuhri, M., Salit, M.S., Ismail, N. & Wirawan, R. 2010. Mechanical
properties of short random oil palm fibre reinforced epoxy composites. Sains Malaysiana 39(1): 87-92.
*Pengarang untuk surat-menyurat; email: mkfadzly88@yahoo.com